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FOREWOID

In a letter under date of 12 December 1967, Dr. Charles A. Reynolds,
Technical Director of Edgewood Arsenal, issued an invitation to hold
the Fourteenth Conference on the Design of Experimwntr in Army Research,
Development and Testing at Edgewood Arsenal, Maryland. In his letter,
Dr. Reynolds set the dates for this meeting as 23-25 October 1968, and
he appointed Messrs. Joseph Mandelson and Raymond Schnell to serve as
Co-Chairmen on Local Arrangements. These conferences are sponsored by
the Army Mathematics Steering Committee and they come under the super-
vision of the AMSC Subcommittee on Probability and Statistics. Dr. Walter
Foster, the Chairman of this Subcommittee, was happy to accept this
invitation and started laying the groundwork for this conference. He
and other members of the AMSC would like to thank Messrs. Mandelson and
Schnell, as well as many other employees of Edgewood Arsenal, who helped
to make the Fourteenth Conference such an enjoyable and successful
meeting.

These conferences are open to scientific personnel of all Government
agencies, and the participation on the program by staff members of
various agencies has been gratifying. In this, and in past meetings,
scientists from the National Bureau of Standards have contributed a
great deal to the tone of these symposia. It seems appropriate that
we point out some of the Bureau participants in this Edgewood Arsenal
Conference. Dr. Joseph Cameron served as a member of the Program
Committee; and he, along with Dr. Joan R. Rosenblatt, served as
panelists in several of the clinical sessions. Messrs. H. H. Ku and
Roy H. Wampler each presented technical papers. Further, there was
presented a paper which was authored jointly by David Hogben and John
Mandel. We are pleased to be able to publish most of these papers in
this technical manual.

Those attending the conference had the pleasure of hearing the
following invited speakers talk on the topics noted below:

Broadening the Horizons of Experimental Design
Lieutenant General William B. Bunker
U. S. Army Material Command

Structure and Classification of Patterns
Professor Rolf E. Bargmann
University of Georgia

Bulk Sampling
Professor Acheson J. Duncan
Johns Hopkins University
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Time Series
Professor Emanuel Parzen
SLalUfULd UiLLVtLbi Ly

The keynote speaker, General Bunker, died before these Proceedings
could be issued. His passing is a heavy loss to the scientific
community, and to me, a special loss, as he was a warm personal
friend.

An outstanding feature of the program of the Fourteenth
Conference was a panel on Bulk Sampling. This is an area of
statistics of special interest to the scientific personnel of
the host installation. Dr. Walter Foster served as chairman end
organizer of this phase of the agenda. He selected Professor A. J.
Duncan to serve as a Discussant and Advisor to the following Panel
Members: Henry Ellner; Boyd Harshbarger; G. R. Lowrimore; Joseph
Mandelson; and, V. H. Rechmeyer. Another outstanding feature of
these conferences is the awarding of the Wilks Memorial Medal. This
year, it was my pleasure to announce that Professor Jerzy Neyman, of
the University of California at Berkeley, was selected to receive the
Fourth Samuel S. Wilke Memorial Medal.

Members of the Army Mathematics Steering Committee think that
the papers presented at the conference have made valuable contributions
to Lhe fields of the design of experiments, statistics, and reliability,
and have requested that these articles be published in these Proceedings.
They wish to thank the many speakers, chairmen, and panelists for their
help in conducting this symposium.

The conference had an attendance of 163 scientists, and 50
organizations were represented. Speakers and panelists came from:
Cornell Aeronautical Lab; Duke University; Federal Electric Corpora-
tion/ITT; Hercules, Inc.; Johns Hopkins University; National Bureau
of Standards; Stanford University; Thiokol Chemical Corporation;
University of Chicago; University of Georgia; and Virginia Polytechnic
Institute; and nineteen army facilities.

Colonel Paul R. Cerar, Commanding Officer of Edgewood Arsenal,
gave the Welcoming Remarks for the host installation. In his talk,
he gave many interesting and historical facts about Edgewood Arsenal.
His address is published here for the edification of those who were
not able to hear him speak.

Formulation of the outstanding features of this conference and
the selection of the invited speakers were made by the members of the
Program Committee (Joseph Cameron, Francis Dressel, Walter D. Foster,
Fred Frishman, Boyd Harshbarger, William Kruskal, H. L. Lucas, Jr.,
Clifforn Maloney, Joseph Mandelson, Henry Mann, Raymond B. Schnell,
and Herbert Solomon). The Chairman wishes these individuals to know
that he appreciated their assistance and valued their comments on the
various phases of the program.

Frank E. Grubbs
Conference Chairman
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WELCOMeE*

Culonel Paul R. Cerar

Commanding Officer, Edgewood Arsenal

General Bunker, distinguished guests and speakers, ladies and

gentlemen ...........

Edgewood Arsenal is proud and gratified to have been chosen to act
as your host for this, the Fourteenth Annual Conference on the Design of
Experiments in Army Research, Development, Testing and Evaluation. I

consider it a privilege to welcome you on behalf of the arsenal and its
personnel. It is particularly fitLing that our arsenal should be given
this opportunity as part of its scientific program for this year of our
existence, a half century of work and achievement as a significant element
in the defense structure of our country.

In October of 1917 the War Department acquired this reservation, later
to become the Infant Gas warfare Service's first home, and in May 1918 named
the installation Edgewood Arsenal. During the lean years between world
wars Edgewood Arsenal struggled to prepare the military arm, offensively and
defensively, in the area of chemical warfare. Despite the meager resources
allotted, especially during the depression years, somehow the installation
survived to provide the basic cadre for the enormous expansion to over 7000
military and 8000 civilian personnel in the peak years of World War II.
Through their devoted efforts, our military forces were provided with a
capability in research, development, procurement and supply of chemical
offensive and defensive materiel.

Existing industrial and manufacturing facilities were rehabilitated and
new ones built. Necessary support facilities such as utilities, an airstrip,
and an expanded rail network were added. The chemical warfare school was
expanded and a modern laboratory complex was built to house consolidated
research and development activities. In May 1942 the installation was re-
designated the Chemical Warfare Center. In August 1946 the name was changed
to Army Chemical Center but in 1963 we reverted to the original title:
Edgewood Arsenal.

In a re-organization approved 7 July 1966, Edgewood Arsenal was
designated the U.S. Army's Chemical Commodity Center with responsibility for
all chemical weapons and defense materiel research and development, subordinate to
U.S. Army Munitions Command. Its previous administrative control over
Fort Detrick was relinquished and Fort Detrick became a separate commodity
center with responsibility for biological weapons and defense research and
development. However, because certain of our responsibilities overlap those
of Fort Detrick the old cooperation between the two installations is still in
existence both by necessity and choice.

*Colonel Cerar gave the Welcoming Remarks at the start of the Conference and
also served as Chairman of General Session I.
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Two sub-posts fall under the command jurisdiction of the Edgewood
Arsenal Commander: Pip, Bluff Arsenal, Arkansas and Rocky Mountain
Arsenal, Colorado. These two arsenals are engaged in various aspects
of procarement manufacture and testing of chemical materiel.

Over the years, then, Edgewood Arsenal has grown to rcpresent about
$115 million in fixed investments, to include $9.6 million in land nnd
improvements; $78.1 million in buildings and facilities; and $27 million
in machinery and equipment. These figures do not include our sub-posts.
The installation employs over 3,800 civilians and over 1,600 military
personnel with a combined gross payroll of some $40 million.

AinoM our civilian employees more than 900 hold bachelor degrees;
over 190 have master degrees; and 75 have attained their doctorates.
In connection with the subject which is basic to the purpose of this
conference - statistics as it is employed in research, development,
testing and evaluation - Edgewood Arsenal can point to a long, and a
still growing interest and participation in this highly specialized
field, Starting about 1942, statistics of this type began to be used
in preparing specification requirements and later in the development
of certain theoretical concepts upon which our surveillance and other
quality assurance activities are based. Much of this work found its
way into the literature and our personnel were actively engaged in the
development of important sampling standards. Interest in, and utiliza-
tion of statistics, soon spread from our quality assurance elements to
our research, development and testing activities. At a later date, an
Operations Research Group was formed in whose work, as you know, statistical
principles play a major role. This group was recently incorporated into
the U. S. Army Munitions Command but it remains physically located on
this post.

The Chemical Corps Engineering Command sponsored several conferences
on Statistical Engineering in the 1950's which some of you may have
attended. It has been our policy to encourage our personnel to take
an active part in all professional activities - delivering and pub-
lishing technical papers and acting as chairmen and moderators of
technical sessions.

Our background dates back some 26 years, when, as you may recall,
the work of Professors Fisher and Pearson in England on the Design of
Experiments and even the work of Shewhart, Dodge, and Romig in this
country in Statistical Quality Control were practically unknown. You
can see why Edgewood Arsenal feels so proud to act as your hosts for
the next three days.

At this point, I am pleased to acknowledge our indebtedness to the
Army Research Office and to its arrangements committee for inviting us
to host this conference and to extend my thanks through Dr. Francis
Dressel, the Secretary, to this committee for the excellent work they have
done in securing such outstanding speakers and in arranging so interesting
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a technical program. We are especially honored and pleased to have as
our keynote speaker, a distinguished soldier who has taken a very keen
and active interest in the subject to be discussed.

Lieutenant General William B. Bunker is a graduate of the United
States Military Academy, Class of '34. He attended the Massachusetts
Institute of Technology receiving his degree of Master of Science in
Engineering. During World War 1I, General Bunker served as Deputy in
Charge of the Transportation Corps' Supply Program and, in 1945, as 7th
Army Transportation Officer, during the occupation of Germany.

When the Berlin Airlift began in 1948 the General was put in charge
of Terminal Operations governing gathering of shipments, loading in the
United States zone, unloading and distributing cargo in Berlin. He
organized a similar system between Korea and Japan when hostilities
erupted in 1950.

In 1950 the Chief of Transportation named General Bunker to be Chief,
Air Transport Division, investigating the application of the helicopter
to Army transportation. The result of this investigation was an immediate
large scale expansion of this activity. General Bunker was appointed
Commandant of the U. S. Army Transportation School in 1954 and the
following year was assigned as Commander, U. S. Army Transportation
Materiel Command, responsible for logistic support of Army aviation.
He was promoted to Major General 1 June 1961.

In February 1962 he became a member of the planning group which
developed the organization for the Army Materiel Command and in June
was assigned as its Comptroller and Director of Programs. On 1 April
1962 he became Deputy Commanding General, U. S. Army Materiel Command
and was thereupon promoted to Lieutenant General on 9 May 1966.

General Bunker has been the recipient of many decorations for his
outstanding work in a long and honorable career, not only from his own
grateful country but also from the United Kingdom and Nicaragua.

He is a member of Professional Societies and published various
articles in technical journals, and has developed a keen interest in
the use of statistics in Army Research, Development, Testing and
Evaluation.

It Is with great pleasure that I introduce our keynote speaker,
Lieutenant General William B. Bunker.

The title of his address is: "Broadening the Horizons of Experimental
Design."

...... Thank you, General Bunker for your very interesting and
informative address.
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One of the most important objectives of these conferences has been
to afford the conferees an opportunity to explore with authnririAc !n

Liubt aspects ot the subject matter which had most recently
received major attention and development. When such areas have been
determined, it has become the prqrtice to invitc experts in these
various areas to speak on the topics selected.

Our next speaker is Professor Rolf Erwin Bargmann of the University
of Georgia and the Thomas J. Watson Research Center of IBM. He
has had a varied career, having been a Rockefeller Foundation Fellow
prior to taking his Doctorate in Mathematical Statistics at the University :1
of North Carolina. He was associat d with our State Department in
Germany and served as an interpreter during the Nuremberg Trials. He
was Assistant Professor of Statistics and Head of the Department at
Frankfurt, later Associate Professor of Statistics at Virginia Polytechnic
Institute. He achipeY fill professorship in 1959. He was a consultant
to White Sands Proving Ground in the summers of 1957 and 1959. He is
a Fellow of the American Association for the Advancement of Science and
a member of several statistical societies.

It gives me great pleasure to present Professor Bargmann, who will
speak on, "The Structure and Classification of Patterns."
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General, U. S. Army Materiel Command, Washington, D. C.
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University of Georgia, Athens, Georgia
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Engineering Directorate, Rock Island Arsenal, Rock Island,
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Command, Warren, Michigan
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xvi



Thursday Morning (Continued)
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Thursday Morning (Continued)

Boyd Harshbarger, Department of StatlRtics, Virginia
Polytechnic Institute, Blacksburg, Virginia

Herbert Solomon, Department of Statistics, Stanford
University, Stanford, California

AN EXPERIMENT USING NUMERICAL ANALYSIS TO MODEL A FUNCTIONAL
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Andrew H. Jenkins, U. S. Army Missile Command,
Redstone Arsenal, Alabama
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1120-1215 TECHNICAL SESSION 9
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Command (OA) and Duke University, Durham, North Carolina
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Prisided over by: Dr. Walter D. Foster, Biomathematics
Division, U. S. Army Biological Laboratories, Fort
Detrick, Frederick, Maryland
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1400-1500 GENERAL SESSION II - Post Theatre

Chairman: Fred Frishman, Mathematics Branch, Office of
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the Army, Washington, D. C.
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BROADENING THE HORIZONS OF EXPERIMENTAL DESIGN

LT General William B. Bunker, Deceased
U.S. Army Materiel Command

Washington, D.C.

From its early beginnings, statistics has been an important vehicle
with which reasonable men have attempted to seek an understanding of the
problems which confront them. Some of the earliest developments and
applications of statistical concepts occurred in response to problems at
the gaming tables. In fact, I have been told that more than one early
statistician earned his keep by calculating odds for a wealthy gambler.
The basic orientation of statistics toward the solution of practical
problems can be found as the motivation for many major developments in
statistics. For example, Thomas Bayes in his often quoted and contro-
versial essay stressed his desire to provide a more efficient procedure
for the estimation of probabilities. More recently, the contributions
of Professor R.A. Fisher in the area of small sample statistics were
motivated by a desire to improve the analytic tools available in bio-
medical research.

The essential point is that many of the important developments in
statistics were motivated by a desire to solve real world problems. I
am concerned that in some quarters this orientation to problem-,solving
has been replaced with a tendency toward self contemplation and a primary
interest in statistical purity. There is a need to re-examine the direc-
tion of current efforts and to confront our major problems head-on. Only
through broadening the horizon& of experimental design can we hope to deal
effectively with our most pressing problems.

Today, as a first step toward broadening the horizon, I would like
to spend the remainder of my time discussing several areas that are amenable
to the application of the concepts of experimental statistics.

SYSTEM TESTING AND DEVELOPMENT. One important area in which much
work is needed involves the statistical issues In equipment testing. At
the offset, I want to stress that our test programs are not and in fact
cannot be scientific experiments. One reason for this is that the tradi-
tional requirements for the design of experiments are infeasible within
the context of a test and development program. For example, a basic
principle of design of experiments involves the control or minimization of
the variation in the experimental situation. This is an almost impossible
requirement to satisfy for two reasons. First, due to modification in the
system during development, the basic heterogeneity of experimental units is
high. This inherent variability represents a violation of a basic statis-
tical assumption. Second, the dimensions of the problem frequently preclude
control or even measurement of extraneous sources of variation. The problem
was illustrated in the test program for our new AAFSS.

The status of a scientific experiment also is denied to our development
and test programs because of the fact that we just can't afford the large
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number ui data points that are required in a classical experimental design.
In practice, testing is done on a small number of prototype systems. If
an attempt was made to gather the number of ohbnrvartons required to achieve
the desired level of statistical significances, no development would ever
take place.

The statistical aspects of testing programs are further compounded by
our difficulties in specification of the model. In many of our test programs
it is difficult to begin to select the relevant variables and logically
impossible to identify the important interactions and nonlinearities.

Our recent experience with the development of 152 ammunition for the
Sheridan provides a case in point. The variable of interest in this case
is binominal, either the round fire8 or it does not fire. We know that
reliability of this ammunition is a function of a number of variables
including quality control, the efficiency scavenger system, the ammunition
case, and the storage environment, but we also realize that there are n other
important dimensions of the problem which remain to be identified. For
example, through observation we have established an interaction between the
degree of moisture in the powder and the quantity of residue. Experience
has demonstrated that higher moisture content resulted in more residue. in
response to this finding we have lowered the moisture content, but this
change raises a question concerning other yet unknown interactions that
are at work in determining the reliability of the ammunition.

Changing the moisture content also illustrates another problem that
pervades the testing programs. When the nature of an item is altered asa matter of course in testing and development, how does one aggregate the
test data that were generated prior to the change with that data which have
been gathered after the change? In a strict sense, the modification has
changed the basic structure of the situation that is being modeled, and
has made the two sets of data incommensurable. In reality, we are measuring
a series of separate probability curves and are reporting the envelope of
these curves. This is analogous to developing a baseball batting average
by combining performance in the p,liminary grapefruit league with that in
standard league play. In both cases, the cumulative measure of performance
combines early and tentative results with those that have been obtained
after the system has been brought up to working order. The net effect of
this procedure is to substantially understate the reliability of the system.

Given this situation, how can we give our customer a valid statement
of quality assurance? Upon examining the results of the testing program,
the statistician would say that we have a ratio of apr'oximately 1 to 52,000,
but what we really need to satisfy the customer is a ratio of 1 - 1,000,000.
At this point I can say, qualitatively, that the real reliability of the
system is understated; however, it is impossible to specify the absolute
magnitude of the error. Naturally, the customer is not satisfied with
the statement about reliability of the ammunition, and something must be
done to improve the situation. The statisticians' answer to this dilemma
is more testing tc develop the required observations. This is an extremely
costly procedure and it would have been better to have done more work on
estimating the initial function. Ad hoc testing at this juncture is not a
feasible solution to the problem.
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An alternative approach can be found in the area of statistical
decision theory. Resolution of this dilemma may be achieved through the
combination of the subjective judgment of the experts and objective
experimental results,

A second area in our testing program that requires attention involves
the development of large, expensive systems. The Main Battle Tank provides
a good illustration of the problem. We really have only a vision of the
MBT. In this situation, the problem is that there is no real testing of
the whole system. Instead, tests are conducted on different vehicles with
various configurations. This means that most of the parameters of interest
vary from test to test and that very little remains constant among the
tests. What we are attempting to model then is really a function of
functions. Casual factors can no longer be expressed simply as numeric
values but themselves must be represented as functions, the values of
which are in turn dependent upon the value of the total function.

One analytic technique that has been utilized to attempt to model
a function of functions is dynamic programming. In the development of
the basic algorithm Bellman used a recursive scheme to reflect the method
of sequential calculation that is the essence of the approach. For example,
consider an aerial weapon system consisting of a navigational subsystem,
a target acquisition subsystem, and a weapon subsystem. It is desired to
determine the optimal characteristics of all three subsystems, but all
these decisions are interdependent. The thing we do know is that whatever
navigational and target acquisition subsystems are chosen, the characteris-
tics of the weapon system, e.g., the rate of fire must be optimal with
respect to the effectiveness of the whole system. Using the principle of
optimality proposed by Bellman, we can say that the optimum rate of fire
is a function of the effectiveness of the aerial weapons system. Since
we do not know the optimal characteristics for the other two subsystems,
the optimal rate of fire and total system effectiveness must be found for
all feasible outputs of the subsystem. This technique may provide a clue
regarding the way to handle complex equations without knowing their specific
form.

The essential point is that we must move away from concepts that
require the testing of a static system. Pressures imposed by necessary
modifications of systems in the development process do not allow all other
things to remain equal and this dynamic aspect of the environment cannot
be ignored.

On balance, it appears that increased emphasis on rigor in the design
of experiments has diverted our attention from the ultimate objectives.
Efforts must be undertaken to develop techniques which provide feasible
solutions to problems of quality assurance and the manipulation of more
complex dynamic models. We need to soften the science of experimental
design to make it a more useful tool in test and development programs.
The alternative to this change is to continue to strive for more tech-
nically precise answers which are even less meaningful in the decision
making process. Unless a conscious effort is made to avoid this plight,
experimental statistics may create a paradox similar to that caused by
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managerial accounting. As a tool of management, the discipline of
accounting has experienced an increase in the precision with which
financial intormation is analyzed and reported, but it still does not

provide much assistance in the decision making process. Decision makers
can safely rely on accounting to identify the loss after the investment
has failed, but it is of no help in forecasting the likelihood of this
occurrence. It is an after the fact discipline, and our requirements
are for knowledge before the fact.

While reflecting on these challenges that lie ahead, it may be use-
ful to reconsider the role of statistical analysis in the decision making
process. The decision maker is concerned with choosing between two or
more alternatives; the value of which remains to be established by events
in the future. Statistical analysis is valuable only to the extent to
which it raises the level of understanding of the problem and in so doing
provides an improved basis for fixing beliefs about the future. In
contrast, analyses that provide interesting expositions, but no additional
understanding, are of little value. It, therefore, is essential for the
analyst to be attuned to informational requirements of the decision maker
if real progress is to be made.

MANAGEMENT INFORMATION SYSTEMS. A second area which could benefit
from the attention of statisticians is the design of management information
systems. Even a cursory examination of the recent attempts to design and
implement management information systems reveals the opportunity for
substantial improvement through the infusion of the concepts of experimental
statistics. Many of these efforts reflect a lack of understanding of the
available techniques for summarizing and annalyzing data. The result of
this naivete has been inefficiency in system design and confusion regarding
the purpose and value of the output of the system. For example, the
operation readiness of our hawk units throughout the world must be monitored
daily by phone. Since this information is vital to decision makers at the
highest levels, one would have hoped that a less cumbersome communication
system could have been planned.

To provide you with more background on the problem area, it may be
useful to examine briefly the origin of our current dilemma. The root
of the problem can be found in our recently acquired capacity to process
and transmit rapidly information. In the last thirty years technological
progress has resulted in the development of three generations of computers;
each of which represented a dramatic improvement over the current state-of-
the-art. Equipped with the exciting abilities to process in a real time
mode and to directly access data banks, the designers of these systems
have moved in the direction of including everything about everything in
the system.

One example of the problem is provided by the periodic Army readiness
report that is prepared for the Chief-of-Staff. Included in this report,
in great detail, is information on not only major items such as tanks and
jeeps but also on many minor items as well. Once attention was drawn to
equipment readiness at this level of specificity it became apparent that
the number and status of most of the items were subject to continual change.
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This meant that the job of preparing a large scale r•pnnr .'a

1Inn-.cundcd by Lhe !act cnat the information had to be updated and pubLi-;i:d
frequently, if it was to be of value in its current form. A question can
be asked as whether or not this is a worthwhile or even feasible effort.
This same point should be raised in every management information system.

In nearly all phases of our business today one can observe information
being translated into electronic impulses for transmission up to higher
levels of authority. It is important to note that once data is separated
from its traditional hard copy vehicle, e%g,, the DA Form; it can be sorted,
summarized, or transmitted at almost unbelievable speeds. It is this
speed and the low per unit cost of processing information which have caused
many of the current problems with management information systems.

These rapid changes in communications technology have caused some
rather traumatic experiences in most large organizations. To begin with,
many management theorists and most managers of today are still thinking
in terms of the traditional forms of organization structure. These
concepts generally involve pyramidal configurations of the different
layers of authority. The problem is that these organizations reflect a
certain state of Information processing technology and this level of
technology is rapidly becoming obsolete. There is no doubt that a certain
disparity has always existed between the institutionalized organization
structure and information technology; however, recent innovations have
aggravated and accentuated the problem. It is useful to examine the
factors that are important to this problem in order to better evaluate
alternative solutions.

One important factor is the heterogeneity in the speed with which
different types of information are processed through the organization.
While it is not possible to rapidly analyse and summarize information on
personnel strength through the organization, it is still necessary to
individually monitor the progress of many R&D programs. So within the
same large organization, new information processing techniques have
dramatically affected the form and function of some activities while
others remain essentially unchanged. This phenomenon has made the
traditional concepts of a centralized and decentralized organization
obsolete in that both tendencies are apparent within many phases of our
business.

The increasing magnitude of the upward flow of information also
serves to exacerbate the disparity between information processing tech-
nology and organizational structure. Too frequently, our concept of
the informational requirements that must be transmitted up to top
management reflects a lack of appreciation for the objectives of the
system. Most communication that an individual has with the higher
levels of the organization is through his immediate superior. Communica-
tion at this level is intimate and detailed and this is as it should be
between superior and subordinate. This is not, however, the appropriate
level of communication between a first line supervisor and top management.
The top level manager has neither the need to know nor the capability
to assimilate the large volumes of specific information; and, therefore,
it makes little sense to send information at this level of detail up through

5



the information system.

In addition to being illogical, this tendency has serious implications
for the organization and the decision maker. If the trend continues,
middle management will of necessity be relegated, in large measure, to
the job of expediting the flow of information up the line of authority.
More important, however, is the effect of this tendency on the performance
of the decision maker. From his point of view, this tremendous flow of
information provides an all encompassing yet fragmentary view of reality.
While the decision maker has easy access to information regarding every
significant dimension of the problem and some trivial ones as well; he
may still find himself in a quandary over the nature of the situation. The
reality of any situation is extremely complex when viewed in its entirety.
Most of us have learned through experience in situations to suppress those
aspects of reality which are superfluous to the problem at hand; however,
the ability to do this effectively depends on an intimate understanding of
the particular problem and environment. This rziLt illustrates a major
impetus for specialization of interest and talent but raises a serious
question concerning the relationship between the top level decision maker
and the information system. It is obvious that no top manager, regardless
of his ability, can begin to accumulate experience comparable to the new
sum of that possessed by the specialists in his organization. It should
be equally obvious that the detail and format of information required by
the manager is markedly different from that which is required in the lower
echelons, This is, however, only half the problem.

The sorting and evaluating of information by the decision maker is
further complicated by the fact that the information has been abstracted
from the environment to which it is indigenous. No longer is it possible
to view the situation in its totality or to make inferences from the
juxtaposition of the various elements. The information is now presented
in a homogenous package and there is little effort made to illustrate the
relative importance of the various bits of information. This format
encourages the tendency to limit the analysis to what are apparently
obvious relationships in the data, and all too often, these obvious
relationships depict only a superficial view of the problem. When con-
fronted with such a situation, the decision maker is tempted to feel that
his evaluation is profound when it in fact may be obvious and trivial or
even worse incorrect.

The question then arises as to what alternatives are available to
aid us in resolving this dilemma. One answer to the problem may be found
in the imaginative and effective application of the techniques of statis-
tical analysis. Concepts and procedures that have been used successfully
for years by statisticians offer the means by which meaningful order can
be restored in our information systems.

Returning to the example of the Army readiness reports, in this
information system the emphasis has been placed on reporting the status
of practically every item in the inventory. A moment's reflection reveals
that this approach is a violation of the principle of parsimony. Why is
it necessary to report data on the status of every item, when we are really
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to note that all information systems have not proceeded down the same
path. The New York City Department of Public Health, for example, does
not attempt to measure the health status of the city by directly estimating
the proportion of the total population who are well. Instead, their
attention is focused only on those who are sick. Their approach is to
monitor the population of the hospitals throughout the city. Through
observation of this one accessible indicator, they are able to maintain
an adequate estimate of the general level of health of the community.

The principle is to replace the real variable of interest with
surrogate which is more easily measured and analyzed. This has been a
relatively common practice among statisticians and it should have applica-
tion in the design of our information systems. In the case of the readiness
report, a substantial increase in the value of the effort would be realized
by reporting exceptions rather than the status of the whole system. This
scheme would substantially reduce the upward flow of information and focus
attention on the real variable of interest. In another phase of the opera-
tion, perhaps the status of a particular maintenance operation could be
gauged more efficiently and accurately through the examination of the
re-enlistment rates rather than the number of items serviced per month.
The kind of changes suggested would not only reduce the upward flow of
information but also place the information in a form and format that is
more useful in the decision making process.

The concepts of sampling offer yet another statistical tool that
appears to have application in the design of information systems. Even
if modern technology can provide us with the machine capability to process
information at very'high speeds, this capability has a significant, positive
cost. It is therefore necessary to examine alternative ways to economize
in the operation. Sampling theory provides the basic notions for efficiently
and economically gathering data about a particular population of interest.
For example, the mean coat of procuring an item could be estimated accurate-
ly and at a mere fraction of the cost of total enumeration through the use
of a self-weighting, stratified sample. It should also be remembered that
in many cases, sample estimates might be even better than wotild u-tially
be expected because our concern in primarily with finite populations.

A more general perspective for design of an information system may be
gained from the philosophy of analysis that pervades among statisticians.
While msny of the designers of information systems have been content to
concentrate on the preparation and reporting of data, the interest of most
statisticians continues through analysis and interpretation. Efforts must
be made to bring the analysis phase into the design of a system. Up to
this point system designers have emphasized performance measures such as
speed or cost per calculation as measures of effectiveness, but we have
seen that this approach ignores the Important question about system effective-
ness, i.e., what is the value of information? Timeliness of information is
important; however, in our effort to obtain more current data we have
ignored certain other important aspects of the problem. Is it really
worth anything to the organization to spend additional money to send
information more quickly if much of the information in the system is
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already redundant or inuseable? Does it make sense to publish figures
in a daily report i1 it will require several weeks worth of observation
to verify whether a change in the data is real or simply an aberration?
The answer to both questions is obviously nol Both queries suggest that,
in the future, major payoffs will accrue to advances in the analysis of
data that can be incorporated within the system. Further analysis will
take additional time; however, it should also substantially increase the
informational value of reports. When examining this tradeoff it is
essential to remember that most changes that take place within a large
organization are gradual and occasionally painfully slow. Given this
situation, it is reasonable to expect that the opportunity cost of the
time lost during further analysis may be substantially less valuable than
the increased understanding which would be generated.

In summary, there is a genuine need to apply the philosophy of
experimental design to the design of management information and control
systems. Statistical techniques can help to determine which variables
should be measured and which should be ignored, as well as facilitating
the analysis and forecasting of trends% Up to now, there has been little
feedback between those interested in experimental design and those involved
in information system design. Much of what we know in the latter area has
been the result of a trial and error process, and as I am sure you are
well aware, this can be a very expensive way to learn. If some of the
statistical notions of sampling and analysis can be communicated to
system designers, then substantial payoffs will be realized. A response
in this direction now will encourage efficiency and progress. If no
response is forthcoming, however, and decision making continues to escalate,
a requirement for total information reporting will demand a huge organiza-
tion just for purposes of processing. In many ways, the dilemma of the
decision maker is analogous to that of an individual who attempts to
examine the behavior of a particle suspended in liquid. The more the
individual studieu the particle the more confused he becomes of the random
effect of brownian motion. The perception of both the hypothetical individual
and the decision maker could be improved through the use of certain basic
statistical notions.

CONCLUSION, As we have seen there are a number of opportunities to
broaden the horizons of experimental design through reduced emphasis on
rigor and increased attention to current problems; be they in testing or
systems design. The next move is up to you.
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Rolf E. Bargmann
University of Georgia

Athens, Georgia

TERMINOLOGY.**

Logical Pattern: A set of p diagnostic events is observed.
Occurrence is marked by 1, non-occurrence by 0. Such single observa-
tion results in a row of O's and l's. Observations are repeated, and
several such rows constitute a pattern. If rows are dependent (e.g.,
observation at consecutive times), a cyclical autocorrelation dependence
is assumed.

Major Event: One or very f w underlying artificial events, each
of which may assume two or more states, which influence the probability
of occurrence of each diagnostic event.

Calibration Pattern: A logical pattern, consisting of several rows,
containing observation of occurrences and non-occurrences of all diagnostic
events if the major event (or, ratner, some physical event closely related
to the artifical major event) is in a known state (e.g., repeated observa-
tion of symptoms of a patient who suffers from a known disease).

Model Assumption (leading to a variant of the Latent Class Model):
The state of the major event determines the probability of occurrence
or non-occurrence of each diagnostic event. Except for this influence,
the diagnostic events are assumed to be independent (principle of
conditional independence).

Sample Pattern: A logical pattern consisting of one or more rows,
describing a situation where the state of the major event is unknown.
Its distance (Euclidean distance or, better, -2 log likelihood) from
each of the calibration patterns determines the proximity of the current
state of the major event to each of the known states represented by the
calibration patterns.

Note that extensive calculations are required on calibration patterns
only. Determination of the distances of a sample pattern from each
calibration pattern is a very simple matter, and can even be done by
hand calculation.

*A handout at the conference served as a basis for this paper.

**Reference, R. E. Bargmann, "A Method of Classification Based upon
Dependent 0-1 Patterns," IBM Research Report No. RC-677, April, 1962).
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obtained from each calibration pattern:

x = 0 or 1 -- the entry in :ow t and column i

of the calibration pattern. N - number of rows, p w number of columns

N
Si m xtii Si/N (column averages)

t-l

N
S p IN (average number of

t-l 1-matches in columns
ij)

If rows are assumed to be independent, then

^al -i [(1-j i ]/N-1

o ^^

•ij " [Pj - PIPN/-'

If rows are assumed to be time-dependent (cyclical, autocorrelation of

lag 1) the following additional quantities are needed

N
Ci - xtixt+l,i (li ' XN+l,i)

t-l

N

D x (1-matches, down)
ij ~ tixt+l~j

t-l

N

U - X ti (1-matches, up)
ii xt+l~ix

t-1

2 2
ri (Ci - Si/N)/(Si - sI/N) (autocorrelation)
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(If N is even, and if a perfectly alternating sequence occurs in a
column--i.e., 010101... or 101010..., should be replaced by
2/(N+I)-1).

Then

Pi(l-pi) 2r i

^o - . (1 +-)

N-I i-i

3
( (N-2)/N , if a column consists of perfect

zeros or ones)

pij-PiPj i Sij'Dij
aij N-1 (1-i) (l-rj N (N-I)

r S -Ui slj-ij

(1-ri) (1-4 N(N-1)

Subject the matrix i (or the corresponding correlation matrix, -- most
computer programs do the conversion automatically) to a Factor Analysis.
If the major event is assumed to have 2 states, extract one factor, if
k + 1 states, extract k factors. A crude technique (e.g., Centroid) or
even cruder ones (e.g., principal components which, alas, some computer
programs call "Factor Analysis") can be expected to yield satisfactory
results. Fnr the special case of two states of the major event, a single
vector f (elements f1) will be reported. From each calibration pattern,

the weights wi - 1M/C - f2) should be calculated.

Now, to calculate the distance (or rather, the -2 log likelihood
quantity) of a sample pattern from calibration pattern q obtain the
average of each column in the sample pattern, call it ai.

Then

d - logo + log (1 + (j~)q i-iiq (w jq-) -I log wiq

+ k I (ai-P q) 2 Wiq

+k i
ia 0 iiq



[P (a iiiq) fiq Viq 2 P

k 2 / l+ I (w,.-l)]
l iiq J i-i

where k = number of rows in the sample pattern, and all logs are to base
e. The last subscript q indicates that the corresponding value is to be
taken from the q'th calibration pattern.

IMPLICATIONS OF MODEL ASSUMPTIONS ON THE STRUCTURE OF THE COVARIANCE
MATRIX: If the major event has only two states, and a is the probability
that the major event is in state 1

N (•-c a ) P_ .' + diagonal

where the vector p has elements (p/-Pi/o); i.e., the difference between

the conditional probabilities of occurrence of diagnostic event i, given
that the major event is in state 1 or 0.

If there are k + 1 states (or, with restrictions, several major
events), the covariance matrix has the structure

-011(1-a1 I cc21.a.. -•a 1k

-o' C12 a 2(1-a 2) . . -2k p1
where N - P +' d~ iagonal.

where a denotes the probability that the major event is in state m,m
and the matrix P has k columns (number of states minus 1). The element
in row i and column m is (pi/m-Pi/0).

These are standard factor analysis models. The matrices are easily
inverted, and the determinant is easily found -- thus, the calculation
of distances from a sample pattern to each of the calibration patterns
can be most easily effected.

A direct evaluation of the conditional probabilities can be made
only if assumptions can be made relative to the probabilities that the
artificial major event is in a given state. Such assumptions are some-
what tenuous, inasmuch as the physical major event is not identical
(though hopefully highly correlated) with the artificial major event.
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Example: Frequency of Repair records, 6 consecutive years,
5 characteristics 0 - below average or average,
I - above average. Calibration patterns for Make A

and Make B

Make A Make B

"",I]1 10111
10111 01111
01010 01111
11010 10101
01101 10101
11111 00101

Estimates of covariance matrices (assuming row dependence)

9 0 0 0 0

0 80 -40 -12 -40

0 0 -40 80 -22 200/3 - L1 A

0 -12 -22 20 -22

0 -40 200/3 -22 80

27 -33 27/2 -18 -27/2

-33 80 -16 54 12 A

i080 27/2 54 - 9 108 18 B

27/2 12 - 6 18 20

Factor Analysis results:

= [0, -. 500, .912, -. 563, .924]

- (-.972, .730, -. 591, .377, .588]

Use each row as a "sample pattern"

Row dA d Decision Comments

00111 23.0534 24.2761 to A
10111 23.0534 11.0242 to B Occurs in A and B, assigned to B
01010 18.1141 166.8874 to A
11010 18.1141 216.8186 to A
01101 60.1230 9.8467 to B Misclassification
11111 22.4190 50.9441 to A
01111 22.4190 1.7716 to B See comment below
10101 58.3983 3.2090 to B
00101 58.3983 31.5718 to B

The 01101 sPquence shows the importance of a dependence or row
assumption. Since, on the first diagnostic variables, the averages are
equal for A and B, there would have been no difference in assignment
between this and 11111, if independence had been assumed, The present
classification is correct.
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Calibraticrn Pattern 0 Sample from 0 with 20% error

1111 1111
111111 11111 11

111 11 111 11
111 111 111 1111

111 111 111 1111
11] 111 111 11
111 1.11 1111 11 1
111 111 111 11

1111111 1 11 111
1 1 111 111 11

-2 log likelihood

from 0 - 97.7 from 0 72.5
from Q - 43.7 from Q 105.6
from A 920.2 from A 1526.4
from E 8931.5 from E 8630.7
from 1 27429 from 1 27875
from 1 28026 from 1 28417
Sample from 0 with 40% error Sample from 0 with 50% error

iiiiii1 111

111ll 111

111II 111 1111

111 1111 111 1
1ii i11 1i1111111
1111 1111iii1 11

1i 11 iii 111

-2 log likelihood

from 0 -437.9 from 0 272.9
from Q -617.2 from Q 346.8
from A 29208.5 from A 14263.8
from E 8131.5 from E 11686.

from 1 29732 from 1 21388

from 1 30022 from 1 2157

11 1 1 1 11 1
11 1 1 111 11

1 1 1111 111 1 111
111 111 1111 1 111 1 1

111111 11 1 111 1 111 1

11 1 1111 111

ill 1111 1

fro A 298. fromA 146.
fro E 843.iro 1 1686.
frmii 2997 from I 2138
from1 3002 from1 215781

] I I i ii i iii1i



Calibration Pattern Q Sample from Q with 20% error

11 iiii iiii 1d
11 i iii 111 ii I

1ii III -1m 131
11i iii 111 1111
ii [ii lll iii

ii1 iii 1111 1ii

fro iii iiii 11
111 Eii i461 11

i1 ii 1 ii

111 111111 iii 11111Ii

1111111111 1 1 11 1 11111 1111 1 1 wi1 4 1 0
-2 log likelihoodfrom Q - 98.4 from Q - 13.4from 0 -39.9 from 0 -4.2from A 1379.1 from A 937.9from E 10466 from E 9600.7from I 31516 from I 28003from 1 31969 from 1 28551

Sample from Q with 401 error Sample from Q with 50% error
11 11 111

i1 111 1
1i1 11 1 11i1111 1

11111 1111 11 1 1
1111 1 1 1ii 1 ii

1111i 1111 1 11Ii
1ii1 11111 11 lii

11111 11 1 1111 1 .1
11 1111 1111 1

iii 1 1111 1ii
1 1 1 1 1 11 11
111 1 1 1 111 11 1i1 11111
1111 11111 iiii 1 1

1111 111iii1 1 1
1111 11 11ii i 11
11111111111i1 

11iiI
1111 11111 1 11111 11i

- 2 log likelihoodfrom 01 511.5 from Q 385.2from c2 529.8 from 0 421.7
from A 1585.9 from A 1925.5
from E 10848 from E 11749
from I 28720 from I 28467
from 1 29341 from 1 29087
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Calibration Pattern I Sample from I with 20% error

111111 1111 111

11111 1111 1 43

o 1 1

11 1

1 1 1

frmQ 18156fo 111 01.

11 1i11 11

1111 11 i
1111 iii1i

- 2 log likelihood
from I - 141.3 from 1 453.6
from 1 - 60.5 from I 488.1
from 0 1215.1 from 0 930.3
from Q 2197.3 from Q 1827.3
from A 3037.1 from A 1964.3

Sample from I with 40% error Sample from I with 50% error

11 11 111 11I
11111111 11111111
1 11 1 13.111

1111
111 1

11 1
1 1111ii

1111 1
1111 11
11 11
11 111

1 11 11
11 11
11 1
11 1

1 1 11
1111 11 1111 1

1 11 11 1111
- 2 log likelihood

from 0 911.6 from 0 840.3
from A 1171.8 from A 128i.5
from I 1398.1 from Q 1675.8
from Q 1815.6 from 1 2011.4
from 1 1835.8 from 1 2142.0
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Calibration Pattern 1 Sample from 1 with 30% error

1 1 1

1111 1 1
1ii1 1 i1

1 i i 1 11
11 1

11 1o11 11

frmQ 177.rm1 316.5

ii7

ii 1111

1111 1 11

1111 11111

: - 2 log likelihood
Sfrom 1 - 140.4 from I 907.7

from I 57.3 from 0 916.6
from 0 1231.6 from 1 937.1
from Q 2217.6 from Q 1789.6
from A 3218.2 from A 1976.3
Sample from 1 with 40% error Sample from 1 with 50% error

11 1
11 1 111

11i 11 1
1ii1 1 1

ii1 1 1
1 1 11

1ii 1 1
ii1 111

1 1ii
1 11

1 I111

111 1 111 11
11111 1 1111111

111111 1111 11
- 2 log likelihood

from 0 911.3 from 0 802.8
from 1 1264.7 from A 956.0
from A 1408.6 from Q 1643.6
from I 1630.9 from I 2867.3
from Q 1773.1 from 1 3316.5
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Research and Engineering Directorate

ABSTRACT. A 24 factorial experiment was conducted to determine
the effects of 4 factors in a single-point tool, turning operation.
Fact¢,,c!.;onsidered were A (tool material), B (cutting fluid type),
C (fluid application method), and D (fluid concentration). Factor B
(cutting fluid type) was of primary interest in this experiment.

An analysis of variance was performed using Yates' technique
to test significance of the different factors and interactions and
to determine the relative importance of these different effects.

The results of this analysis indicate that the type of cutting
fluid is a relatively unimportant factor compared with the method of
application and the concentration of the cutting fluid.

INTRODUCTION. Cutting fluids are applied to various metal cutting
tools to help prevent excessive heat buildup and to reduce friction at
the tool-chip interface. A number of beneficial effects can be obtained
if a cutting fluid can perform these functions. Tool life can be extended;
or, higher cutting speeds can be used while maintaining the same tool life;
or, some combination of higher speed and longer tool life can be obtained.
Tolerances and surface finish may improve or be easier to maintain with an
effective cutting fluid.

Various users and manufacturers of cutting fluids have developed
formal performance tests to evaluate and compare different cutting fluids,
mainly for their own special interests. Unfortunately, these tests have
not been standardized; no specific procedure has been widely accepted;
and, rarely, is any formal significance test made. Also, the importance
of optimizing the cutting fluid is not usually determined relative to the
importance of optimizing other parameters such as tool geometry or material.
In many cases elaborate programs are set up for cutting fluid selection;
but, in the same shop no organized effort is made to optimize cutting speeds
and feeds or any of the other parameters affecting the machining operation.
In fact, experimental design and statistical analysis have been notoriously
lacking in the whole field of metal cutting research. A typical comment
overheard in a conversation between some colleagues went something like
this: "Statistics is fine, but we can't run that many tests in metal
cutting." The idea that a great number of test runs is necessary to
facilitate statistical analysis is complete nonsense! Experiments can
often be reduced in size by proper design and consideration of the analysis
to be performed. It is certainly uneconomical to make experiments larger
than necessary.
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A 2' FACTORIAL EXPERiM.NT. As an illustration ot a type or experi-

mental design which can be used in the metal cutting field, the remainder
of thit paper describes a 24 factorial experiment (4 factors each at 2

levels). This experiment was conducted to determine the effects of four
factors in a single-point, lathe, turning operation. These factors were:

Factor A - Tool material
Factor B - Cutting fluid type
Factor C - Method of fluid application
Factor D - Fluid concentration

Each factor was tested at two levels, thus, making an experiment of
16 observations. The two cutting fluids tested were Fluid A (a heavy-
duty, chlorinated, soluble fluid) and Fluid B (a fluid specially formulated
for mist application). Each fluid was used at two diffe-ent dilutions
(20:1 and 35:1), and the two different methods of application were
conventional flood and mist.

It should be understood that an experiment of 16 observations is
certainly a small experiment; but, it could be readily expanded by adding
more factors and/or using more than 2 levels. The mathematical model of
this experimental design was:

YtiJk -M + At + Bi C + Dk + ABti + ACtj + BCij + ADtk + BDiA +

CD + ABCtij + ABDtjk + BCDijk + ABCDtijk

The tool life was obtained for each of the 1b different treatment
combinations at 4 different cutting speeds. A computerized regression
analysisngave a tool life vs. cutting speed relationship of the form
V - V1  . Where T a tool life (minutes), V - cutting speed (surface

speed of workpiece in feet per minute), V1 - cutting speed for 1 minute
tool life, and n - a determined exponent. Estimates of Vg0 (the cutting
speed corresponding to a 20 minute tool life) was obtainea from these
equations.

These estimates of V., are presented in Table I. This data was
then used in a formal analysis of variance using Yates' technique
(Table II).

The Yates' Technique gives the sums of squares for all the effects
without the need of memorizing or looking up any equations and, thus, is
a powerful tool for analysis of variance. The ANOVA table is shown in
Table III. The 4-three factor and the four factof interactions have been
pooled to form a residual term with 5 degrees of freedom. This is justified
in this case since all of these terms are of the same order of magnitude.
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TABLE III

ANOVA Table

Source SS DF MSR

A (tool material) 76,867.5625 1 2,057.345***
B (fluid) 95,0625 1 2.544
C (Application

Method) 232.5625 1 6.224*
D (Concentration) 451.5625 1 12.086*
AB 138.0625 1 3.695
AC 1207.5625 1 32.320**
AD 52.5625 1 1.407
BC 27.5625 1 .738
BD 410.0625 1 10.975*
CD 138,0625 1 3.695
ABC 22.5625
ABD 18.0625 186.8125 5
ACD 18.0625
BCD 60.0625 1&6.8125 2 37.3625
ABCD 68.0625 5

F1 , 5 ,. 9 5 : 6.61 F,1 5 ,. 9 9  16.26 F1,5,.999 47.18

*significant at 95% confidence level
**significant at 99% confidence level

***significant at 99.9% confidence level
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INTERPRETATION OF ANOVA TABLE. The significant AC (tool material
X application method) interaction indicates that the application method
best for one tool material may not work well on the other tool material.
Also, the high BD (fluid X concentration) interaction indicates that the
best concentration depends upon the fluid used.

The cutting fluid type (Factor B) appears to be a relatively
unimportant factor compared with the application method and the concen-
tration.

The tool material (Factor A) was a very highly significant factor,
as expected, since carbide and cast alloy are quite different in character.
This factor was so dominant that it appeared to be desirable to analyze the
data for carbide and cast alloy as two separate experiments. This was done,
and the results of this analysis are presented in Table IV and V, respectively.

INTERPRETATION OF ANOVA TABLE FOR CARBIDE. Analysis of data using
carbide bools shows that all of the main effects were formally significant
in the following order:

1. Factor D - (Concentration)
2. Factor B - (Fluid type)
3. Factor C - (Application method)

The best combination for carbide was flood application of fluid A at
the 20:1 concentration.

INTERPRETATION OF ANOVA TABLE FOR CAST ALLOY. Considering the cast
alloy tool material alone, only Factor C (method of fluid application)
was formally significant. Mist application was much better with cast alloy
tools.

CONCLUSION. As this paper clearly illustiates, statistical design
and analysis can be effectively used in metal cutting experiments. The
factorial design is particularly well suited to these experiments. Yates'
Technique, applied to a factorial experiment, is not difficult and can be
carried out without any computational equipment.
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I
TABLE IV

Yates' Table (Carbide)
sS

Treatment Yield (1) (2) (3) (3)2 4 a

(1) 231 463 899 1741 ........
b 232 436 842 -43 231.125
c 217 427 3 -39 190.125

bc 219 415 -46 1 .125
d 225 1 -27 -57 406,125

bd 202 2 -12 -49 300.125
cd 219 -23 1 .15 28.125

bed 196 -23 0 -1 .125
total 1741 1155.875

ANOVA TABLE (Carbide)

Effect SS OF MSR

D 231,125 1 1849*
C 190.125 1 1521*
D 406,1... 3249*
BC .125 1 - I

_JD 300.12 _1 2401*
_CD 28,125 1 225*
BCD .125

F1,1,.95 =161.4

B - Fluid
Factors C - Application method

D - Concentration
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TABLE V

Yates' Table (Cost Alloy)

Treatment Yield (1) (2) (3) (3)2 • 8

(1) 68 148 330 632 -------
b 80 182 302 4 2

c 88 118 18 100 1250
bc 94 184 -14 20 50

d 69 12 34 -28 98
bd 49 6 66 -32 128
cd 89 -20 -6 32 128

bcd 95 6 -26 32 128
total 632 1784

ANOVA Table (Cast Alloy)

Effect SS DF MS MSR

B 2 1 2 .018
C 1250 1 1250 11.521*
D 98 1 98 .903
BC 50
BD 128 434 4 108'.5 ...

CD 128
BCD 128

F1,4,. 9 5  7.71

B - Fluid
Factors C A Application method

D - Concentration
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ABSTRACT. Measurement of One Aspect of Vehicular Mobility.

Measurements of vehicular mobility havc usually been conducted as
"go-no-go" tests, in which vehicles are matched against obstacles until
they can no longer proceed, or "Jury system" tests which rely upon
qualitative judgments based on opinions of observers and/or drivers of
the vehicles under test. As a new approach this project investigates
the feasibility of using a statistically designed test which is
reasonably unbiased and provides some measurement of precision for
evaluating mobility of the vehicles.

The paper describes the design problems presented for developing
a test program, the experimental design selected, the field conduct
of the test program, and results of the test. Test data were limited
to time required for a vehicle-driver combination to traverse a pre-
scribed course. The report covers a total of 450 runs, using 18 drivers,
ten vehicles, and 27 test courses over three different terrains.

ACKNOWLEDGMENT. The assistance of Project 07312, Willow Run
Laboratories, Institute of Science and Technology, the University of
Michigan, under Contract No. DA-20-13-AMC-05927(T), with Emil H. Jebe
as Principal Investigator, is acknowledged in the design of the experi-
ment, preparation of computer programs for analysis of the test data,
interpretation of the experimental results and the preparation of this
report.

The remainder of this paper was reproduced photographically from
the author's manuscript.
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INTROI)UCT ION

Mobility has long been a major aspect of consideration in
warfare. In the year 218 B. C., Hannibal crossed the Alps and
subsequently won the first of many battles from the Romans.
In addition to horses Hannibal utilized a few elephants which
apparently increased his overall mobility of materiel.

With the advent of motorized vehicles considerable progress
was made in the transportation of men and materiel. This
progress was due in great part to the roads and highways which
were built as part of the transportation complex.-

Roads are often not available to supply Front line troops
during wartime or for other use during national emergencies. In
recent years then, a prime consideration in the design of a
military vehicle has been off-the-road mobility.

Measurements of vehicular mobility generally have been
grouped into two types, the "go-no-go" and the "jury system".
In the "go-no-go" type, the vehicles are pitted against various
obstacles- ditches, steep inclines, swamps, etc., until they
can ,o longer proceed. The "jury system" uses the combined
opinions of the drivers and observers for evaluation. These tests
give useful results but are subject to certain weaknesses. For
example, the courses are usually well defined, not properly
replicated, and performance of a vehicle can be greatly influenced
by the driver.

As a new approach, this project investigated the feasibility
of using a statistically designed test which is reasonably un-
biased and provides some measurement of precision for evaluating
mobility of the vehicles in a tactical cross-country situation.
In a tactical situation, the driver often may not he familiar
with the area, and paths to follow are not defined. Roads may be
mined. The driver may avoid obstacles if possible, and the
time required to reach a destination may be an important factor
for the successful completion of a mission.

CONSIDDERATIONS OF THIE TEST

At an early stage in the development of the statistical
design, some basic issues were resolved.

1. These tests were intended to measure only one aspect
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of mobility. This was the time required for a vehicle-driver
combination to traverse from point A to point B where the
course is defined only by the points A and B except where auxi-
liary markers may he needed to keep the driver on course.

2. The experimental unit was the course. It was not
practical to provide the number of coiirses required to perform
all the desired tests and still have the drivers limited to
only one traverse of a course. This aspect was desired; other-
wise a learning factor would be introduced when a driver tra-
versed a course more than once. As an alternative perhaps
many drivers could be used and thus reduce the number of courses
required.

3. The courses selected would be about the samne length,
approximately measured, and not accurately surveyed. A course
length of somewhere between 5 and 20 miles seemed reasonable.
[Examination of the data showed that the actual lengths varied
from 0.6 mile in Terrain III to 2.7 miles in Terrain I,
approximately].

4. The t.ests were to be conducted in Nevada with the
cooperation of the Nevada Automotive Test Center. Three types
of terrain were selected to give greater meaning to any results
or conclusions obtained. The terrains were defined as follows:

a. Terrain 1: Flat and open with small irregularities
in the form of dry washes, and scattered areas of sagebrush one
to two feet in height. Obstacles were minor in nature.

b. Terrain II: Hilly and open with rolling hills,
and areas of deep washes and sheer drops. This area contained
outcrops of rock and scattered areas of sagebrush similar to
Terrain I.

c. Terrain III: llilly and timber covered. Areas of
trees were scattered between open spaces of sagebrush and grass.
The trees were closely spaced pine ranging between five and
twenty-five feet tall. This was the most difficult of the
three terrains.

5. The supply of drivers was not a problem. However,
the supply of experienced drivers was limited. By definition, a
driver was classified as experienced or novice according to his
own statements as to his ability and/or experience to drive on
the highway and cross country.
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0. It was planned that the drivers wnuld be instructed
to traverse the course at the fastest speed they felt they
could go without damaging the vehicle or injuring personnel.

7. A referee was to ride in each vehicle. The referee
was the official timekeeper. Ile would also record any other
information that might effect interpretation of the data. For
example, a driver may become bogged down, or lost, or the
vehicle may not be performing properly. The referees were
also responsible for the safety of the vehicles and occupants
by having the driver avoid any maneuver which could result
in damage to the vehicle or occupants. The referees were
to be familiar with the particular courses to which assigned.

8. Nine or ten vehicles were expected to be available for
this test. The ones used would be those available at the time
of the test.

CONSIDERATIONS IN TIHE I)JSIGN

The primary interest in these tests was to determine if a
designed experiment could be useful for evaluating factors
that affect the mobility of vehicles. This objective could be
met if it were possible to design a test which could differentiate
between vehicles, at a specified confidence level. Any other
information obtained would be useful for designing future tests.

Considerations were as follows:

1. Vehicle effect
2. Course effect
3. Driver effect

a. experienced
b. novice

4. Terrain effect
5. Mlarking of courses
6. Order of testing. The tests were expected to require

several weeks. The weather could be a factor.
7. Tracks left from a previous run on the same course.
8. Referee effect
9. Interaction effects

a. Vehicle - course
b. Driver - course
c. Vehicle - driver
d. Vehicle - terrain
e. Driver terrain
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I

SELECTION OF THE DESIGN

In the considerations of the design there were at least
five major factors that had to be accounted for in the design.
These were order of testing (runs), courses, vehicles, drivers,
and terrain. The other factors would have to be controlled
by conducting the test with care or, considered not significant.
Comments are as follows:

I. Marking of the courses should present no problem in
Terrain I but in the hilly and/or timber covered Terrains 1I
and III care should be exercised so that a driver could easily
determine the course by following the check point markers.

2. After a course was used once there would then be a
path to follow. It was decided that before a test run was
made, each course would be traversed once. In addition, each
course would have two or three false trails at the start.
The purpose of this was to give the first driver an environment
similar to that of the following drivers. Drivers were instructed
not to follow previous tracks unless absolutely necessary.
Generally there were no roads to follow but in case a driver
did come across an established road he was instructed to assume
it was mined, in which case his maximum speed could not exceed the
two or three miles per hour of mine sweeping operations.

3. The referee effect was to he controlled by careful
selection and uniform instruction to those selected as referees.
Also, the referees were to establish the courses so they could
become familiar with them before the tests were started.

4. Each course could have been laid out across all three
terrain types. This would still satisfy the primary objective
of the experiment, but it would give no information on terrain
effect nor on the interaction effects of vehicle-terrain and
driver- terrain.

5. One way to cope with a problem of this size is to adopt
the Graeco-Latin square as the basic structure for the experi-
mental plan. With this choice only four factors can be used.
The hasic structure would include runs, courses, vehicles,
and drivers. To obtain any evaluation of terrain effect, each
square would have to be repeated for each terrain. The Latin-
square and Gracco-Latin square have the limitation that no
interaction effects can he measured. It seems reasonable that
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there probably are some inter-action effect. If present, these
effects would inflate the error sum of squares and decrease the
sensitivity of the test. In retrospect, one driver was unable
to complete some of the runs in Terrain III because of his
inability to handle the vehicle on these courses. Never-
theless, it was assumed that interaction effects would not
seriously affect the analysis and the Graeco-Latin square
was adopted as an acceptable design for this experiment.

6. Information was desired on experienced driver versus
novice driver. The test was designed such that nine of each
were assigned. Dlrivers were randomly divided into two groups
with the requirement that one group contain four experienced
and five novice drivers and the second group contain five
experienced and four novice driveis. Each group was then
assigned to either the first or second square for each terrain.

TIlE GRAECO-LATIN SQUARE

A Graeco-Latin square of side N is defined as a square
layout of N rows and N columns with N Latin and N Creek letters
"filling the N2 cells with the following restriction: each
letter (Latin or Greek) may appear only once in each row and once
in each column, and each Latin-Greek combination may appear
only once. Graeco-Latin squares do not exist for all sizes.
A square of size six is not known. One of side ten was only
recently determined.

In this experiment the Latin treatment represents vehicles
and are designated by capital letters. The Greek treatment
represents drivers arid are designated by numbers. Rows and
columns represent'.orderof run and course, respectively.

Correct randomiza'tipn procedures must be used when con-
ducting the experiment uting a Graeco-Latin square design.
The general procedure is as rollows. Randomly select -a
square of the size required from a listing of the squares that
are different from one a#.other; that is, they are not con-
vertible into one another by permuting rows and/or columns.
After selection of a bas-c 2quare, the rows are permuted randomly,
then the columns are permuted randomly. Finally, the Latin and
Greek treatments are randumly assigned.
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PROBLEMS ENCOUNTERED DURING TIHE TEST

1. It was anticipated that some drivers would become dis-
oriented while traversing a course. One task of the referee was
to prevent this when it appeared the driver was in the process
of becoming lost. There were a few incidents of this nature,
including one where the referee also became disoriented. These
incidents were recorded by the referee. Upon completion of
the test the project engineer and the referee discussed the
individual incidents and made a decision whether or not to
accept the elapsed time as a data point or discard the data as an
outlier. In general, when a driver became lost for more than
four or five minutes, that time datum was rejected, since this
was not the fault of the vehicle, and the vehicle was the factor of
primary interest. A discarded test run was not rerun.

2. In a few instances, a vehicle bogged down. Again,

when excessive time was required for the vehicle to again get
under way, the time datum for that run was rejected.

3. A driver-terrain interaction effect or more precisely,
a driver-course interaction effect became evident during the
test. In particular, one driver lost confidence in controlling
some of the vehicles during the tests in Terrain III. In these
instances, the referee had to drive the vehicle back to camp.
Since the time datum for these runs were not used any analysis
for driver-terrain interaction would be biased.

4. Some of the courses within the same terrain were
more difficult to negotiate than others in the same terrain.
Differences in vehicles contributed to an apparent interaction
effect. For example, Vehicle I was an armored car, and this vehicle
has a high center of gravity which could be dangerous in the
hilly courses of Terrains II and IIT. Two vehicles were driven
with the hatch closed and vision was limited to that obtainable
through the vision blocks. Conditions of this nature did
result in a few uncompleted runs (as previously mentioned), or
data which were subsequently not used.

S. The referees did not react equally to hazardous
situations. During off-duty hours, the drivers would discuss
actions of the referees. Thus the drivers obtained an insight
into how a referee would react under certain conditions. As a
result, the drivers had a tendency to modify their driving
according to who the referee was.
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6. The referees also were not uniform in controlling the
test when a driver wandered off course, The time allowed
before a referee gave the driver instructions in these cases
apparently varied considcrahly. Since the data obtained were
the times required to traverse the courses, the referees did
influence the outcome of the tests.

7. Drivers were instructed not to follow trails left by
previous vehicles. By the time the second square was begun courses
were covered with trails and it became increasingly more difficult
to keep the drivers off these trails. The subsequent analysis of
variance data did not show a significant run effect at the
five percent significance level.

8. Vehicle El, a 5000-gallon fuel tank'r-truck was wii:h-
drawn from the test after completion of the runs of Terrain I.
This vehicle was difficult to control over the basically flat terrain
of Terrain I. It was judged best for the safety of the drivers
and vehicle not to use that vehicle for Terrains II and III, A
1-1/4-ton cargo truck designated E2 replaced Vehicle El for
Terrains II and Ill.

9. There were instances of mechanical breakdown of a
vehicle during a test run, which required varying amount of
time to repair. There were also instances when a vehicle per--
formed below par. This again would result in a judgment by the
project engineer and referee whether to accept or reject the
time datum for that run.

10. Because of mechanical difficulties Vehicle C proved
inadequate in rerrain III. Tests with this vehicle were stopped
after the first square in Terrain III. A replacement vehicle
was not available so an 8 X 8 Gracco-Latin Square had to be
designed for the second square of Terrain III, in lieu of the
9 X 9 size used for the previous five squares.

11. Vehicle I broke an axle and did not finish tests in

Square 2 of Terrain III.

THE DATA

Data to be analyzed were data for Squares I and 2 for each
of Terrains 1, II, and III.

-ata for one of these six Gracco-Latin squares is shown in
Table i. The small squares indicate where data are missing. The
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i LnifklLm and maximum timies repi red for traversing a course are
shoin within the two circles. The extremes for this square
give a ranf, e of F,.1 to 5..8 minutes. Olther recorded data were
tused to computc averare vehicle speed and the average vehicle
miles driven per course. A summary of these data are shown
in Tllc II. The courses as laid out were much shorter
than originally suggested. The courses are listed as miles
driven rather than length. In Terrain III especially some of
the larger vchicles with a large turn ing radius had to detour
around some obstacles that smaller vehicles could negotiate.

The overall data obtained for analysis showed the following:

Terrain i, Square 1 had one empty cell.
Terrain 1, Square .1, Terrain II, Squares 1 and 2 were
complete.
Terra in I I, Sqatare 1 had eleven empty cel ls
Terrain III, Square 2 had seven empty cells in the
3 X 8 square.

ANALYSITS OF THiE ATA

Analysis of Variance Tables for the squares having no
empty, cells were computed in a straightforward manner. Analyses
were performed in two ways for the three squares having empty
cells, The first analyses were obtained by estimating the
missing data, then performing the standard analysis of variance
com1putations. This method results in an upward bias for the
treatillSeit SUIM of squares, so the data were also analyzed by
regression analysis to obtain an unbiased value for the treat-
mient stun of squares,

To determine the missing values, these missing data were
designated as a, b, c, ... etc. Then steps were set up for
an analysis of variance. 'T*he error sum of squares is defined
in the usual. manner; that is, it is the remainder after the
treatments sums of squares are suhtractel from the corrected
total sum of squares. The error sum of squares is thus
determined in terms of the unknowns. Partial differentiation
is perforTmed on the error tzrm with respect to each of the
untknown r•issing values and derivatives are set equal to zero.
The resulting set of equations is solved for the missing values.
Since the errnr torm wa; minimi 7fd, the remainder sum of squares
is unbiased.
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This analysis was also obtained using the experimental
design model:

Py F E iXi + e i -, 2 . . 7
I 1 1+(for 9 9 9 square)

This is a general linear model of less than full rank.
The Xi's take only values of 0 or 1, In the 9 X 9 square,
the 9 levels for each of the four factors, plus )) for the
mean, gives an X matrix of size n X 37 with n equal to the
numher of observations. Square 1 of Terrain ITT, with eleven
missing values gave art X matrix of s ize '10 X 37, and i was
solved from the normal equations for this model of

xTx• ,,x-

A solution was derived by arbitrarily equating to zero
the Bi's corresponding to the ninth level. for each of the
four factors, partitioning the matrices, and solving the
reduced X matrix of size 70 X 33, which was of full rank.
(reparametrization). Now, one of the conditions that may be
applied in solving the regression equation is that the sum of
the V's for each factor is equal to zero. A linear trans-
formation was ' rposed on the B's to meet this condition as
follows: The I's for each Factor were summed, the result
dividpd by nine, and this amount subtracted from each of the
nine 's. The general mean was also adjusted the same amount.
The A's or b's were thus departures from mean time and could
be interpreted directly. A large negative b meant that this
level of the factor had the effect of traversing the course
in a much .horter time than the average time.

Additional computations were performed on the squares
with missing data to obtain thb sum of squares for vehicles
and drivers for an ANOVA tahle.

"The items of main interest were vehicle effects and driver
effects. For these effects, differences of the means were
tested using Iuncans Multiple Range Test at the five percent
significance level.

RESULTS

Primary analyses of the data were summarized in ANOVA
tables for the six squares. One of these tables is shown as
Table III. It is noted that only vehicles, and drivers were
randomized. The courses ire assumed to h a random sample from
a population of courses. Then a significance test for courrces
is valid. Runs cannot be randomly assigned. Thus the sum of
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squares for runs can be computed but a significance test for
runs is not valid. The magnitude of the ratio of mean square
for runs to remainder mean square was small for all six squares.
When tested at a significance level of five percent, the course,
vehicle, and driver effects were always significant at this
level except in two cases and in these two cases the signi-
ficance level was less than 10 percent. Results of the analyses
are summarized in Table IV, which shows the F-ratios and their
respective significance levels.

Although two squares were run in each terrain, true re-
plication was not obtained because a different set of drivers
were used in each square. Under the assumption that each set
of nine drivers per square were approximately equal, an analysis
of variance was made on the combined Squares 1 and 2 for
Terrains I and II. The squares of Terrain III were not combined.
Combining the squares made the tests more sensitive for
differences between vehicles.

A comparison of experienced versus novice drivers was
made by partitioning the sum of squares for drivers, The F-
ratios did not show a significant difference between experienced
and novice drivers for any square, nor for the combined squares,
at the five percent level.

Application of lDuncan's Multiple Range Test applied to the
means gave separation of vehicles into groups which were
signiricantly different from one another, at the five percent
significance level. See Table V. Some vehicles fall between
two adjacent groups and cannot be considered different from
either group. Those vehicles are indicated by connecting lines
to the main groups in the table. For example in the upper left
square, the group 1), F, and A was the Fastest, followed by
the group B, I, C, C, and then vehicle Yl. Vehicle 11 can he
associated with either of the two groups indicated.

COMB I•I•'I) ANALYSIS FOR TEFRRA INS

The vehicle mobility test was designed aroand the indi-
vidual Gracco-Latin Square. It was not designed so the six
squares over the three terrains could be pooled in a straight-
forward manner. Any analysis over the three terrains is further
complicated by the missing values inr Terrain III, and grouping
of the drivers into experienced or novice drivers. Main items
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of interest in combining the terrains are measures of the
relative performance of (1) vehicles over terrains and (2) drivers
over terrains.

(1) Vehicles Over Terrains

The problem of missing values was minimized by
using only data on vehicles for which information was available
for all six squares. A table of means of size 6 X 7 representing
six squares and seven vehicles was obtained by omitting data
for vehicles C, El, and E2. See Table VI. The table is still
slightly biased because of the inclusion of estimated values
for missing data on individual runs. The bias was not considered
serious because an estimated value in general was incorporated
into an average of eight or nine numbers.

An analysis of variance was performed on the table of means
for vehicles. This data is shown in Table VII. The F-ratios
confirm that terrain and vehicle effects were highly significant.
The main item uf interest in this Table, the vehicle X terrain
interaction effect, had on F-ratio of 0.93 and thus was not
significant.

With the understanding that squares are to be thought
of as replicates, for vehicles at least, the entries in the
ANOVA for [Sq 1] versus [Sq 2] and [Sq 1] minus [Sq 2] may be
used as some measure of "learning". This is a "pseudo-learning"
since a different set of drivers was always used in the second
square for each terrain. It does indicate, however, that drivers"
were able to increase speeds by utilizing evidence of trails
from earlier runs. The [Sq 1] verus [Sq 2] mean square provides
an estimate of "learning" over the whole experiment (all three
terrains). The [Sq 1] minus [Sq 2] comparison provides an
estimate of the variation in this learning from Square 1 to
Square 2 within each terrain. In both cases the probability
of these F-ratios occurring by chance under 110 is less than
0.005. The significant "learning" effect appears to be
contradictory to the conclusion of no run effect within each
square. That is, if this "learning" effect is the result of
tracks or trails left from the previous vehicle, then the
"learning" effect should commence immediately after the first
run.

The run effect for the six squares was investigated
further as follows: First, the run totals were plotted with
the order of runs as the abscissa. A least squares linear
regression line was added. Although the points appeared
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scattered the slopes were negative for five of the six squares,
indicating less time to traverse a course as the run number
increased. But one square had a positive slope.

Analysis of variance tables were constructed to show the
reduction in sum of squares due to linear regression, with one
degree of freedom, and the deviation from linear regression,
with seven degrees of freedom for the 9 X 9 squares and six
degrees of freedom for the 8 X 8 square. If the order of runs
is a real effect, then the mean square ratios for reduction in
sum of squares due to linear regression should be large. A
tabulation of these ratios for the six squares, Terrain J,
Square I through Terrain 1I1, Square 2, follows:

d.f. RED. M.S./REIM. M.S.

1, 47 6.16
1, 48 0.46
1, 48 1.10
1, 49 4.02
1, 37 0.34

1, 28 2.68

These ratios do not give strong support for the conclusion
that drivers used evidence of previous trails to reduce their
traverse time within a square. A possible explanation of the
pseudo-learning between squares is that during the runs of the
first square the drivers were able to comply with the requirement
of not using trails left from previous runs; however, compliance
to this requirement broke down during tests for the second square.

Performance of vehicles over the three terrains was shown
graphically by first subtracting the means for the individual
square from the vehicle means. The performance for the vehicles
were then algebraically added over the six squares. The
departure from mean time for each vehicle could then be
plotted as shown in Figure 1. Vehicle F shows the best overall
performance. This vehicle is the 1/4-ton MlSl Al Utility Truck.
This is a jeep type vehicle. Vehicle 1) was the commercial
Kaiser jeep. Vehicle Fl was the slowest vehicle. This was
a 16-ton payload vehicle with an unusual control system and no
suspension other than the tires. In Figure 1 it must be
remembered that vehicle El was used only in Terrain I, Vehicle E2
was used only in Terrains II and III, and Vehicle C was not used
in square 2 of Terrain III.
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(2) Drivers Over Terrains

There was no replication of drivers within terrains;
hence, no direct test for driver X terrain interaction can be
obtained if an ANOVA is performed on a table of means for
drivers. An ANOVA operation was computed and the mean square
term for driver X terrain interaction was 77,915. The magni-
tude of this term is nnt large in relation to other relevant
mean squares obtained from the data. The remainder sum of
squares term in the previous ANOVA table for vehicles over
terrains was 22,325. A denominator of this magnitude for
determination of the F-ratio would indicate that the driver X
terrain interaction effect is significant at about the 0.025
level. The remainder sum of squares for the six basic squares,
however, ranged from 35, 938 to 283,164 and it is concluded
that the driver-terrain interaction effect cannot be properly
assessed.

Data for drivers were summarA.zed in the same manner as
for vehicles. Differences between the fastest and slowest
drivers within a square ranged from 5.5 to 11.2 minutes except
in Terrain III Square I the maximum difference was 25.8
minutes. The mean time for all drivers in this square was
30.2 minutes. The major portion of the difference can be
attributed to driver Number 3. Overall performance of this
driver was poor, as shown graphically in Figure 2.

The total difference in elapsed time, over all terrains,
between experienced and novice drivers was 49.9 seconds, or
less than one minute. This difference was not significant at
the five percent significance level, nor even at the 20 percent
significance level. It can be safely concluded that although
differences exist among drivers, the differences are between
individual drivers and not the subclassification of experienced
and novice as defined for this experiment.

BIAS IN TREATMENT SUM OF SQUARES

The percent upward bias of treatment sum of squares
were calculated for the three squares having missing values.
Results are shown in Table VIII. The percent bias was determined
from the ratio of sum of squares determined by supplying estimated
values, to the unbiased sum of squares as determined by the
regression analysis. It can be seen that the bias for vehicles
for Terrain III square 1, with eleven missing values was over
52 percent. Actually, all conclusions for vehicles were the
same as both F-ratios were significant at less than the 0.01 level.
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HIowever, the 21.4 percent bias did modify the conclusions for
drivers in Terrain III, Square 2. (The F-ratio obtained using
the unbiased sum of squares was not significant at the five
percent level whereas the F-ratio had been significant when
computed from the biased sum of squares).

CONCLUSIONS

1. The Graeco-Latin square design for this experiment did
allow the separation of various factors so that relative effects
of each could be estimated.

2. The linear run effect within squares was not consistent
throughout the experiment. However, there was some evidence
that the order or testing may sometimes be significant.

3. The course effect was large throughout the exrcriment
and the largest overall contributor to the sum of squares. This
means that the courses within a terrain were not homogeneous
with respect to time required for a vehicle to traverse the
courses.

4. Vehicle effect was significant. It was possible to
assess relative vehicle performance by separating vehicles of
similar performance into different groups.

5. Driver effect was significant. Individual drivers
could be separated into groups of similar performance. However,
there was no signifcant difference between the subclassifications
of experienced and novice drivers as defined for this experiment.

6. Interaction between vehicles and terrain was not
significant.

7. Interaction between drivers and terrain could not be
properly assessed.

8. A pseudo "learning" effect between the two squares
within a terrain was highly significant. The cause of this effect
was not accurately described.

SUMMARY AND RECOMMENDATIONS

The number of possible combinations of the fur factors
with nine levels is nine to the fourth power or 6561. Since
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only 81 observations were taken hy using the 9 X 9 Graeco-
Latin square, the actual test is equivalent to a 1/81 replicate.
Results of these tests and the information obtai.ned were
considered very satisfactory. This type of test appears useful
for other tests involving mobility of vehicles. Specific points
for consideration are as follows:

1. There was some evidence, although not conclusive,
that trails left by previous runs influenced subsequent runs.
It is also reasonable to expect that variations in the weather
and other environmental conditions would affect the outcome of
a test run. It is therefore recommended that the order of
testing (runs) be built into the design for futuri tests of this
nature.

F 2. The design must allow for analysis of the effects of
differences in courses and differences in drivers.

3. The referee effect was not measured during these tests.
Ancillary information picked up during these tests indicate
the referee effect may be significant. In a future experiment
of this type it may be appropriate to superimpose an additional
orthogonal square onto the two orthogonal squares of the Graeco-
Latin design to assess the referee effect, i.e., add another
language to the design.

4. Since there was no significant vehicle-terrain interaction

effect, the size of most future experiments could be reduced
by limiting tests to one terrain. As an alternative, courses
may be laid out over a varying type of terrain.

5. This general type of statistically designed vehicular
mobility test may be extended to determine differences among
features of vehicles. Examples:

(a) Different power plantstransmissions, or other

components in the same vehicle.

(b) Effects of payload

(c) Tracked versus wheeled vehicles over a particular
type of terrain.
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COURSES 1 2 3 4 5 6 7 8

RUNS
926 85S 1323 1228 1931 1491 1878 1425

12 114 D10 A18 (E2)17 G16 Ills A12 F13

429 616 977 935 2429 1618 1631 763
13 012 116 (E2)13 B15 AIO F17 G14 Ill8

630 842 1662 F-- 662 1554 742 1629
14 (E2)18 1117 D14 F I ol F1S A16 1113 G12

700 544 1164 1597 ] 968 1075
15 G15 A13 1116 F12 D17 (E2)10

462 594 1409 741 1972 878 896
16 1110 F14 G17 A18 B12 F11 31 (E2)16 D15

450 1185 F 728 1144 1968 814 1402
17 B13 (E2)15 D16 1117 Go F18 A14

768 712 622 [1 1604 1901 F1 1098
18 A17 G18 Flo D13 (E2)12 IF, B16

541 1749 1173 1594 1202 1285

19 1112 AIS G13 (E2)14 D18 BlO Fi17

Letters a Vehicles
Numerals - Drivers
Numerical Data - Time to traverse course, in seconds.

VEHICULAR MOBILITY TEST DATA

TERRAIN III, SQUARE 2

TABLE I

44



Average Average
Minutes Vehicle Miles Driven
Per Run Speed, MPH Per Course

Terrain I
Square 1 10.0 - 46.9 5.7 - 12.7

2.5 -2.7Square 2 8.0 - 3S.9 5.8 14.9

Terrain II
Square 1 9.2 - 46.6 4.8 - 7.1

1.5 -2.5

Square 2 7.7 - 34.4 5.5 - 7.8

Terrain III
Square 1 7.1 - 74.1 2.3 - 4.1

0.6 -1.7
Square 2 5.1 - 52.8 2.7 - 5.2

VEHICLE SPEED AND COURSE DATA

TABLE II
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I-1* 1-2 II-i 11-2 111-1 111-2

F-RATIOS

Runs * 1.70 0.65 1.81 0.94 0.84 1.04

Courses 4.90 2.56 4.38 14.26 11.39 10.66

Vehicles 16.68 18.25 1.99 5.13 3.38 2.40

Drivers 3.20 2.78 3.22 10.35 3.91 2.07

SIGNIFICANCE LEVELS

Runs ** - - -

Courses ,001 .025 .001 .001 .001 .001

Vehicles .001 .001 .100 .001 .005 .050

Drivers .010 .025 .010 .001 .005 .100

* Example: 1-1 • Terrain I, Square 1
** Significance Test Not Valid

F-Ratios and Their Respective Significance Levels

TABLE IV
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Square I Square 2 Combined

DFA DF DFA

) A AIIGB H

BIGC IC GBI
SL3 C

(lii) (El) (El)

No DFH DFI

Significant A(E2) (E2

Differences GB

FHD(E2)B 1F Not

AG DI(E2) Combined

IC ABG

DISTINGUISHABLE VEHICULAR GROUPS
AT S PERCENT SIGNIFICANCE LEVEL

TABLE V
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A R D F G H I

TER SQ 1 932.9 1140.9 901.5 928.6 1160.2 1067.2 1149.4
#1 SQ 2 843.7 1070.9 760.1 766.8 1025.6 926.3 1149.9

TER SQ 1 1270.0 1327.2 975.1 1025.6 1260.4 1090.7 1535.0
#2 SQ 2 1003.2 1077.1 855.8 857.0 1061.3 908.6 1288.7

TER SQ 1 1816.7 1635.9 1578.9 1372.4 2013.5 1416.3 2416.2
#3 SQ 2 1383.1 1384.2 1043.0 954.5 1394.1 917.2 1060.0

TABLE VI: TABLE OF MEANS FOR VEhIICLES OVER TERRAINS
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SOURCE d.f. M.S. F-Ratio

Squares (6)

Me an 1 58,919,874

Terrain 2 827,562 37.07

[Sq 1] vs [Sq 21* 1 940,056 42.11

[Sq 1] minus [Sq 2)** 2 227,064 10.17

Vehicles 6 172,334 7.72

Vehicles X Terrain 12 20,788 0.93

Remainder ** (18) 22,325

Vehicle X Square 6 18,641

Veh X Ter X Sq 12 24,167

Total 42

*Over three terrains
**Within Terrains

** For estimate of experimental error

ANOVA For Vehicles Over Terrains

TABLE VI I

/ 5
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PE'RCE'NT BIAS

Terrain I Terrain III Terrain III

Square I Square 1 Square 2
(I ;Missing Value) (11 Missing Values) (7 Missing Values)

Runs Courses 2T.n4 12.0 T .r

Vehicle 0.8 52 .2 9.1

D~river 2.2 47.0 21.4

UPWARD BIAS IN TREATMENT SUlM OF SQUARES
WHEN MISSING VALUES WERE ESTIMATED

TARLE VIII

51



800

El

600

z
400

C
200

o

0-.zoo

F

-400

PERFORMANCE OF VEHICLES

Figure 1

52



600

EXPERIENCED DRIVERS

SNOVICE DRIVERS

400

o 14

6 200

~12

z

312
~~10

-200

8

-400

PERFORMANCE OF DRIVERS
OVER THREE TERRAINS

Figure 2

53



PROBABILITY OF A NON-REPEATABLE OBSERVATION - AN

EXAMINATION OF THE UTILITY CONCEPT AND THE

NATURE OF QUEUEING SEQUENCES

Mikiso Mizuki
Federal Electric Corporation/ITT

Vandenberg AF Base, California

0. INTRODUCTION. The subjective probability is often defined
using the utility concept of gambles and lotteries, cf., de Finetti
[2] and Savage (8]. Such an approach gives the only tangible means
of measuring the personal assessment of subjective probabilities.
However, the basis for this approach seems to be the unstated premise
that the gambles are to be played or can be played repeatedly. The
expected utility or the weighted mean of gains with the weighting of
the probabilities of particular outcomes has a clearly defined meaning
under such conditions. On the contrary, the came weighted mean does
not possess any practical meaning for a non-repeatable observation.
Fishburn (3] concedes that in order to define subjective probability
coherently using the utility concept, it is essential to have con-
sequences that can occur under more than one state. This indicates
the possibility of modifying the utility theory for non-repetitive
random events.

As the second topic of this paper, the nature of queueing sequences
is investigated from the same point of view. The queueing sequences
constitute non-repeatable observations for each particular service
system. An observable queue size sequence is dependent on its companion
sequence of arrival/service events. By the above argument, the prob-
ability discussed in queueing models of a particular system cannot be
interpreted as subjective probability. An investigation on the characteris-
tics of ensembles of queueing sequences is made.

is constructed using a mixture space, for instance as defined in [3]. A

mixture bet consists of a set n - {A,B,C,...} and operation nA + (1-m)B
which define an associating element of n with each a e(0,11 and each
ordered pair (A,B) f S 2 such that, if A,B i C , a , B O [0,11, then

(.) IA + OB - A

(1.2) aA + (l-a)B - (l-u)B + aA

(1.3) 468A + (I-B)B] + (1-a)B = ciA + (1-a0)B.

55



In repeatedly played Rambles. the exoression aA + (l-a)B corresoonds
to the gain (or loss) of mixed outcomes of A's in 100A of plays and
of B's in 100(1-a)% of plays. In particular, if the gain A is set
equal to unity and the gain B is set to zero, the utiliLy of the mix-
ture of A's and B's; namely, col + (1-n) .0 - c, represents the sub-
jective probability that A occurs. The generalization of this gambling
situation to non-repetitive random events requires the substitution of
the uncertainty of a single random outcome by an aggregate of random
observations.

Some of the difficulties are typified by the examples of non-constant
valued consequences. For instance, the utility in the sense of social
justice of a judge's sentence varies depending on his choice of act of
taking the side that the accused did or did not commit the crime;
Fishburn, loc. cit. In the risk taking acts of Russian roulette and
dangerous mountain climbing, the mental elation, if survives, after the
acts gives a different value of being alive from that of not taking the
chances. Under such conditions, the linear combinations of utilities
of consequences do not have any meaning. And, this is the basis that
Fishburn made the statement that subjective probability cannot be dis-
cussed for such cases.

The probability assigned to a non-repeatable observation is best
formulated as a set of real numbers distributed over an exhaustive set
of mutually exclusive possible outcomes. Denote the possible outcomes
byi Ail i o 1,...,n, and the real numbers assigned to Ai by P(Ai),

satisfying P(Ai) _0 and I P(Ai) 1 1. Suppose a gain of Ai is made

when Ai is observed, where all the gains may be bounded. Then, if Ai

is observed, no other A 's (j0i) can add to the gain after observing Ai.

Because of this, there exist no logical bases for associating a gain ofI , Ai with those of A 'a in the form of the expected utility, (gain of
ijiSAi) P(Ai)"

2. EXPECTATION AND EXPECTED UTILITY. Define a variable which
takes on xi when A. is observed, and define the indicator function

1 if the observed outcome is Ail
(2) i -

( 1A0 otherwise.

Then, the simple random variable X is given by, cf. Loave [41,

(3) X- x I
i At
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The exnerrArinn mf Y 4a Aafl.A 1,.

(4) k(X- = xi P(Ai).

Suppose the utility of the constant consequences are represented by x1
when the state Ai obtains, Then, (4) is the expected utility of the

outcomes. However, as mentioned earlier, the same expression is not
adequate for the representation of the utility of a non-repeatable and
non-constant valued consequence. In order to circumvent this difficulty,
Mizuki (6] suggested an alternative definition of expectation for a non-
repeatable observation of the form

(5) ENR(X) - • xi IA (PA1 ) - x1 2(A ) IA
i Ii

i-l,...,n, yielding n different expected values of each possible outcome
x . The ENR expectation introduced here is consistent with Bayes' defini-
tdon of probability (I] of any event to be the ratio between the value at
which an expectation depending on the happening of the event ought to be
computed and the value of the thing expected upon its happening. The use
of (5) leads to an interesting modification of the utility theory for a
non-repeatable event.

The above formulation is slightly generalized. Suppose there exist
a chosen act, denoted by H, and n mutually exclusive states, A Jol...,n,

H
and consequences, uH , measured in some utility, when H is chosen and A

obtains. The probability that A obtains when H is chosen is defined by

real numbers PH(Aj), satisfying PH(Aj) 0 and IPH(Aj)m 1. In order to

account for the non-constant values of consequences, uj is not necessarily

equal to uH'j for H' 0 H. The familiar use of mixed acts is not justified

for a non-repeatable situation and will be excluded from the subsequent
development. The connotation is that in spite of the mixing operations
prior to the final choice of act, the chosen act is unique, thus losing
all of its random attributes unlike the case of repeatable events. This
eliminates the necessity of defining the probability P(H) assigned over
different choice of H's. Under this set of conditions, a simple random
variable of utility UH of a chosen act H is defined by

n

(6) UH n~ u~ IA
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(7) ENR(UH) uH P (A) j ,-,.,n

* ~H H- A-

For a choice problem of a non-repeatable event, the expectation given
in (7) can be used as the optimizing criterion.

3. A CRITERION FOR PREFERENCE. The individual expectation

SP H(A ) of (7) may be interpreted as the psychological incentive

j~j jH
force acting on a lever at the point of distance u from the fulcrum

with the mass PH(Aj), whereas the incentive force should be measured

at a fixed point on the lever always. Since there exists only one
* outcome event Aj, the incentive forces can act only individually, but

not collectively, for any given decision problem. Application of such
an interpretation is considered below.

* Savage discusses an example on the choice between two pairs of
gambles, pp. 101-103 of [8]. Savage prefers Gamble 1 to 2, and Gamble
3 to 4 after reversing his initial intuitive choice of Gamble 4 over 3
by applying the sure-thing principle. However, the utility theory being
developed simply as a normative theory, it is natural to seek an augmented
normative theory which explains his initial intuitive choice. The
specifications of Savage's gambles are as follows. For the choice
"between Gambles 1 and 2,

Gamble 1: $500,000 with probability 1; and

Gamble 2: $2,500,000 with probability 0.1,

"$500,000 with probability 0.89,

$0 with probability 0.01.

Similarly, for Gambles 3 and 4,

Gamble 3: $500,000 with probability 0.11,

$0 with probability 0.89; and,

Gamble 4: $2,500,000 with probability 0.1,

$0 with probability 0.9.

For the sake of simplicity, suppose one acts based on a linear utility
function over the range of zero to $2,500,000 of the form u(x) - kx,
k >0 for x dollars gain. Using (7), it is immediately seen that the
expected utility term of $500,000 of Gamble 1 is greater than any of
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Likewise, the combination of the expected utility terms of $250,000 and $0

of Gamble 4 is more attractive than the $55,000 and $0 combination of
Gamble 3. A similar preference pattern is obtained even in the general
case of usual concave utility functions. When the utility function be-
comes sharply convex, an individual inclines to prefer Gamble 2 to 1,
and at the same time, he remains to prefer Gamble 4 to 3. This is a
clear indication that the leverage system model can explain the general
intuitive choice patterns.

The preference rule examined above can be summarized by:
Dominance of Expectations: Act H is preferred to act G, if

H G G A.

ui P H(A) > u P G(A for corresponding Ai's.

This is a partitioned version of the familiar Bayes' principle which
maximizes the expected utility (or utilities in this case). The other
familiar rules of dominance principle, minimax regret, and maxmin
principles remain unchanged for such non-repeatable events. For the
details of this development, the readers are referred to [7].

4. ABOUT QUEUEING SEQUENCES. A queueing model is specified by
the input process, service time distribution, and the number of servers.
The most elementary example is that of Poisson arrivals (M) and negative
exponential distribution (M) of service times with a single server (1),
or M/M/l system, which will be examined in the following.

For a particular system, a pair of sequences of customers' arrival
and departure times, or equivalently a pair of sequences of queue sizes
and arrival/service events can be observed. In the latter pair, the
queue size sequence is functionally dependent on the observed sequence of
arrival/service events. These sequences are random in nature prior to the
observation, but are unique and fixed when it is observed. In other
words, these sequences constitute a pair of non-repeatable observations
from an ensemble of such pairs. A subjective probability may be used
to describe the uncertainties of such samplings. However, there exists
a complete analogy with the utility of non-constant valued consequences
of non-repeatable event of Section 2. If we use the Fishburn's example
of a judge's sentence, the arrival/service events sequence corresponds
to the judge's taking the side that the accused did or did not commit
the crime, and the queue size sequence corresponds to the social justice.
This puts the problem right back to the start.

The M/M/l models are often analyzed using the birth-and-death process
models. Consider a simple birth-and-death process of Poisson input with
a constant parameter X and a negative exponential service time with a
constant parameter u. By denoting the probability that the queue size
is n at time t by P Wt), the standard differential difference equations

n
are introduced, i.e.,

59

K ? I II I I I I I I I I I



(8) P'(t) - -(X + 1)Pn(t) + AP t) + )A 1 (t) for n, 0,

P;(t) -- XP(t) + ýI~P(t)

The original balancing equation is given by

(9) Pn (t+at) - (1-XA t- 1At)P n(t) + XAtPn0 l(t) + UaAtPn+l(t)

for n> 0. Notice that there exist two classes of probabilities in (9),
namely, one class of UAt, vat, and (I- AAt- pAt), and the other of P n(t).

The former designates the probability of arrival/service events, and the
latter designates the probability of queue sizes. The queue size of a
particular M/M/i system is, however, by definition a step function in
time. If the queue size at time t, denoted by q(t), is known, for
suitably small At,

fq(t) with probability l-NAt-pAt,

(10) q(t+ At) - q(t)-l with probability pat,

q(t)+l with probability xAt.

In fact, q(t) may not be known unless it is observed, but q(t) is not a
random variable. Rather, q(t) is an observation which is a constant; and,
furthermore, q(t) cannot be observed repeatedly for any given t. Thus,
q(t) is a single non-repeatable observation. Equation (10) defines that
q(t) is a function dependent on another non-repeatable observation over
At of a new arrival, a departure, or no events.

In the original formulation of the birth-and-death process models,
P (n) is defined as the proportion of n items in existence at time t withn
respect to a set of simultaneously observable ensembles, such as bacterial
cultures, and particles in chambers. Our primary interest in the behavior
of a particular queueing system differs from these cases, and Pn (t) is a

representation of the uncertainty for the value q(t) prior to its non-
repeatable observation. Since q(t) is known to be unique at t, it is
sensible to construct a parametric model shown below:

Define Q(N), QW(A), and Q(L) to be three matrices satisfying
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Q(N) - ( 6 1j) i,J-0,1,2,...

Q(A) - (6,i=,1,2....; Jl,2,...

(611)

(ll(

q(L) - °
(ati l,J) 1-1,2,3....; J-0,1,2,...

At time t the queue size of a particular M/M/1 system is given by a
vector q(t) - (q 0 (t), q1 (t), q 2 (t), ... ), qi(t) - 1 for some i, qj(t) = 0

for 1 # J. The queue size at t + At is then given by q(t)Q(x), x u N,A,L,
which will occur with the probability 11(x) respectively such that

•; II1(N) - 1 - (A *I ) AO t :t

(12) II(A) -

In this formulation Q(x) is a random matrix which takes on Q(N), Q(A),
or Q(L) with the probability of In(N), Is(A), or II(L).

The two different notions of expectations of (4) and (5) can be
applied to the above argument. Let xi and P(Ai) correspond to Q(x) and

II(x), respectively. Then, we can define a simple random matrix

(13) Q - Q(x) I
x x

where x = N,A,L. Then, from (4) we obtain

E(Q) = Q Q(x) I1(x)x :
(14)

= (1-XAt-pAt)Q(N) + XAtQ(A) + tAtQ(L).

Consider some arbitrary ensemble of q(t)'s, and define the expectation
E(q(t)) = p(t) over this ensemble to be a probability vector such that
p(t) - (pi(t)), i = 0,1,2,..., 0 Lpi(t) 1i, 1pi(t) - 1. Define the

entry of p(t)Q(N) for queue size n to be P (t), of p(t)Q(A) to be Pnl(t),

and of p(t)Q(L) to be Pn+l(t). Then, the entry of E(p(t)Q(x)) for queue

size n is given by the Equation (9) of the birth-and-death process model.
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On the other hand, the use of (5) obtains

ENR(Q) - Q(x) I1(x) I
x

S(l-X•t-put)q(N) , if x - N,(15)
)- tQ(A) , if x - A,

pntQ(L) , if x - L.

This definition of ENR(Q) satisfied a one-to-one correspondence with
(10) except for the fact II(x)Q(x) is given instead of Q(x) with its
associated I1(x).

Another queueing model of Poisson arrivals (M) and general service
time distribution (G) of a single server (1), or M/G/l system can also
be analyzed using the approach of queueing sequences. It can be shown
that the convergence properties defined for the overall ensemble of

4 queueing sequences do not hold for the conditional subensembie of M/G/l
sequences, cf. (5].
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APPLICATION OF SIGNAL FLOW GRAPH THEORY

TO A STOCHASTIC PROCESS

R. C. Stimson
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Washington, D. C.

ABSTRACT. A method is presented for calculating the probability
of killing a multiple target aircraft formation attacking a missile
battery as a function of engagement parameters and missile firing
strategy. The stochastic processes engendered by various firing
strategies are represented by signal flow graphs, facilitating the
calculations. Results are utilized to optimize missile firing
strategy. Although developed for analysis of firing strategies, the
method can be applied to many analogous problems involving stochastic
duels and programming under conditions of uncertainty, where the
situation can be resolved into discrete states with transition
probabilities dependent on both the state and the path by which it
was reached.

INTRODUCTION. When an air defense system using missiles, which
home on energy furnished by an illuminating radar and reflected by
the targets, attempts to engage a formation of aircraft (or missiles)
which are grouped closely enough in position and velocity that they
appear as a single target to the homing missiles until the letter are
close to the formation, a question arises as to the optimal firing
strategy. The choice of a strategy for any particular situation
depends on several factors which affect the conditional probability
of success at any particular point in the process and which must be
accounted for in formulating a generalized framework for assessing
various strategies. When a missile engages the formation, it
initially homes on the centroid of reflected energy. At some point,
the return from a single target will override the centroid, and the
missile may have to perform a relatively high-g maneuver in the end
game, degrading its kill probability. The effects are worst for the
case of two targets, where the energy centrold may move back and forth
rapidly, and become less detrimental as the number of targets inLreases,
since the energy centroid tends to remain closer to the center of the
formation in this case. Therefore, in analyzing the effectiveness of
various missile firing strategies, it is necessary to assign a weighting
factor to the single shot kill probability (or SSKP) in accordance with
the number of targets in the formation. Since the maSgnitude of the
weighting factor increases as the number of targets increases, it might
seem advantageous to fire as many missiles as possible in the first volley.
However, as the number of simultaneously fired missiles is increased, the
probability of two or more missiles locking on the same target increases,
and at some point a further increase becomes unattractive.
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In the following method of analysis, the number of attacking
aircraft is taken as k, and the stochastic process of shooting them
down is represented by a system having k states, the number of each
state denoting the number of aircraft which have been killed at that
point in the process. The system is depicted by a single flow graph
for each firing strategy. The paths leaving each node represent all
possible ways to go from each state to succeeding states, each path
value being the conditional probability of reaching state n+p via that
path given that state n has been reached. In order to illustrate how
this technique is used to determine an optimal firing strategy, the
number of targets is taken as four, and the following four strategies,
in which Snl, n 2 ,...n refers to n1 missiles fired in the first volley,

n2 the second time, etc., and n the jth and all succeeding times, are

analyzed, using the sigual flow diagrams depicted in Figure 1 through 4
in conjunction with Mason's signal flow graph rule to effect the
calculations.

MISSILE FIRING STRATEGIES

S1, 1, 1,
52, 2, 2, ..
S3, 3, 3,
S3, 2, 1,

SIGNAL FLOW GRAPHS FOR UNIFORM STRATEGIES. For strategy Sl, 1, 1,
... , the engagement process is represented by Figure 1 in a manner
suggested by Hall [1]. The four states are represented by nodes 1 to
4, each state representing the number of planes which have been shot
down at that point in the process. Each firing of a missile is a
Bernoulli trial with the probability of success, equal to the product
of the single shot kill probability and the multiple target weighting
factor for that state, determining the value of the path to the next
state, and the probability of failure determining the path value of
the self-loop to the same state. Path values are multiplied by a
dimensionless parameter x. Since the system function or ratio of
output to input, from the input to a specific node is a multiplicative
function of the node-to-node path values, the exponent of x in the
calculated system function, or gain, to that node is equal to the
number of missiles fired to reach the state represented by that node
via that path. The self-loop in state four is necessary to account
for any missiles fired or still in transit after all targets are
killed. It is seen that the engagement sequence in this case is a
Markov chain with as many states as there are aircraft, each state
representing the number of aircraft which have been killed. Although,
in this simple case, it is feasible to solve the problem using transition
matrices, it will be seen later that this technique will become increasingly
tedious for more complicated strategies. For instance, a "non-uniform"
strategy, where successive volleys may contain different numbers of
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missiles, constitutes a system with memory, in which the conditional
probability of transition to the next state depends not only on the
present state, buL also on how one arrived in it; i.e., how many
missiles were fired in reaching the present state. The stochastic
process then ceases to be represented by a Markov chain, and the flow
graph becomes very useful as an aid both in calculation and in under-
standing the physical implications of the situation. The actual
calculations are carried out using Mason's gain formula [2, 33.

In the signal flow diagram, the value at each node is equal to
the sum of the values of all paths leading to that node. Each path
value is the product of the value of the node at the beginning of the
path and the transfer function associated with that path. Signal flow
diagrams find their greatest application in electrical engineering in
connection with differential equations, repcesenting control systems,
which are first Laplace-transformed, then depicted as flow diagrams,
solved using Mason's rule as described below, and then transformed
back to the time domain. In the present case, the "input signal" is
simply unity probability of reaching state 0; i.e., of shooting down
at least zero aircraft. The nodes represent states which are defined
by the number of aircraft which have been shot down, state k representing
a point in the process at which k aircraft have been shot down. The
"1"transfer functions" are simply the conditional probability of reaching
a certain state, or number of aircraft downed, given that a certain other
state had been reached previously. In order to represent these probabilities
as functions of the number of missiles being shot, the conditional prob-
abilities are multiplied by xn, where n is the number of missiles which
are shot in each volley when attempting to go from a node to a succeeding
node. As will be seen below, when Mason's rule is used to find the out-
put signal, given the input signal and the signal flow diagram, the path
values between successive nodes are multiplied. Therefore, the highest
exponent of x in the system function, or ratio of output, represents the
total number of missiles fired to reach the final node, or number of air-
craft downed, since it was arrived at by traversing a series path from
node to node, with the path values multiplying and therefore witil the
exponents of x in each path adding. Thus, considering Figure 1, it is
obvious that the probability of shooting down four planes; i.e., of
reaching Node IV, by firing only four missiles is

3
P(IV, 4) i t P

i=O

This is true since, in order to down four aircraft with four missiles, one
must traverse the paths representing the conditional probability of reaching
the next state (getting a hit) directly from Node 0 to Node IV without
traversing any self-loops, which represent the conditional probability
of remaining in the same state (getting a miss). It is seen that by
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multiplying eacn r by x, the system function, uL 8ain, rUL LCC111A.!LA

node IV by firing only four missiles is

3 3
G(IV, 4) - Pi x- x4 i Pii-a iWO £

The exponent of x is seen to represent the number of missiles fired.
If one was to miss with the jth shot, however, it would take five
missiles to shoot down the four aircraft, and the probability would
be

3
P(IV, 5, miss jth shot) - Wj P

i i÷J 1-
i-a

In this case the system function arrived at by multiplying each Pi by
x, would be

3 5 3
G(IV, 5, miss jth shot) q x -0 P x - x qj 0 P

i i0j

Of course, the total probability of shooting down four aircraft by firing
five missiles is the sum of five such probabilities, arrived at by con-
sidering a miss on the jth shot and letting j range from 0 to 5. However,

the system gain will still contain an x5 term. As will be seen below, use
of Mason's rile in conjunction with a particular diagram will produce a
polynomial in x in which the coefficient of x in each term will indicate
the probability of shooting down all the aircraft, using the strategy
associated with that diagram, by firing the number of missiles indicated
by the exponent of x in that temr. The calculations may be carried out
to any desired power of x (ntumber of missiles fired) and the probability
of shooting down the aircraft approaches unity as the number of missiles
is increased without limit. If it were desired to find the ?robability
of reaching a lesser state, say, state k (k aircraft downed), then the
signal flow graph could be used by omitting all paths which lead to
higher nodes than Node k.

Mason's signal flow graph gain formula is a technique for utilizing
a signal flow graph to obtain the gain of the system instead of directly
solving the equations describing the system. It makes use of the gains,
or transfer functions, associated with forward paths and loops, the gain
of a forward path being the product of the gains of each segment of the
path, where each segment leads from one node to another. A loop is
simply a forward path which closes on itself. The formula is:
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where

G system gain, or ratio of output to input 3

G, - gain of the kth forward path

A system determinant

1 - (sum of all individual loop gains) 5

+ (sum of products of gains of all possible combinations
of two non-touching loops) - (sum of products of gains
of all possible combinations of three non-touching loops)

+.-

- value of a for that part of graph not touching the kth"k forward path

While the mechanics of the formula are simple, they frequently
are tedious for a signal flow diagram which has many loops and forward
paths. Fortunately, this type of repetitive calculation is easily
carried out with a digital computer; one only needs to identify the
individual forward paths and their respective non-touching loops on a
particular graph in order to be able to use a standard program.

For the strategy of firing successive volleys of two missiles,
S2, 2, 2, ... , depicted by Figure 2, it is seen that several results
may ensue from the firing'of a volley. First, one may score two hits,
not on the same target, and will, therefore, go from state n to state
n+2. Secondly, one may score only one hit, and will, therefore, reach
state n+l. Thirdly, one may score two hits, both on the same target,
and will, therefore, reach state n+l by a different path. Fourthly,
one may score no hits and remain in state n. In order to assign the
correct value to each path, it is necessary to know the probability of
Z missiles homing on the same target when each of m missiles homes on
one of n targets. This will be

The effects of these probabilities are seen in the signal flow graph.
The technique of forming the graph is straightforward; all possible

transitions from one state to the next are given a path, which is
assigned the appropriate probability and multiplied by x 2 , since two
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missiles are beina fired. The binomial coefficients are also neceseary,.
since the paths result from Bernoulli trials and follow the binomial
probability law. The values of all paths leaving each state node will,
of course, sum to unity; if they do not, a mistake has been made. I,;

is seen that the process is still a Markov chain, since two missiles
will be fired with the same probability of success when the system is
in a particular state, regardless of how that state was reached. The
extension to strategy S3, 3, 3, ... , is straightforward and results in
the flow graph in Figure 3.

FLO4 GRAPHS FOR NON-UNIFORM STRATEGIES. When one uses a non-
uniform strategy such as S3, 2, 1, 1, ... , the system becomes somewhat
more complicated, as seen in Figure 4. The number of missiles to be

fired when the system is in a particular state now depends on how many
were fired in reaching it. Therefore, the transition probabilities are
dependent not only on the present state, but also on how that state was
reached. The system has now developed a memory and can no longer be
represented by a Markov chain. Fortunately, the flow graph remains
quite simple even for this type of stochastic process. Node N,

representing the :tate in which n targets have been killed, is
merely split into v nodes, where each node is reached from a prior
node either by firing a volley composed of a different total number

V"! of missiles, m being the number of different total numbers of missiles,
or by proceeding from a different node such that the same point in the
firing strategy is reached. Consider a "keyed" firing strategy
S3, 2, 1, 1, 1, ... , where the transition between volley sizes; e.g.,
between the volley of three missiles and the volley of two, is not
made until there has been n change of state; i.e., until at least one
plane has been shot down as , result of firing missiles in volleys of
three. This information is notmally available from a continuous wave
illuminating radar, since a falling tone indicates that one or more
(but not how many) planes has been killed. The keyed strategy does,

of course, require the operator to wait until the present volley of

missiles has reached the target area before firing the next volley.
For the case of four targets and firing strategy S3, 2, 1, 1, 1, .,.,

this necessitates two nodes for state two and two nodes for state
threw, as can be seen from the diagram. Although self-loops and
forward paths are thereby added to the flow diagrmn, the calculations
do not become conceptually more complicated, but merely more voluminous.

Since an electronic computer would ordinarily be usei to evaluate system
gain, using Mason's rule, for situations involving a large number of

aircraft or a complicated firing strategy, this is not A serious draw-
back. Indeed, the chief advantage of the method is that the complexity
of the calculations does not increase in proportion to the number of
states in the system and the complexity of the strategy. If instead
of a keyed non-uniform strategy, one uses a "pure" strategy, in which

the transition between volley sizes is independent of changes in state,
it is necessary to provide additional split nodes to accommodate the
paths representing misses by all missiles in a volley. This type of
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path will no longer be a self-loop to the same nods, but will lead to
a separate node representing the same state but requiring that a dif-
forent number of missiles be fired. For example, for the strategy
S3, 2, 1, 1, 1, ... , the self-loop to node 0 would now lead to subse-
quent nodes by the strategy S2, 1, 1, 1, ... , finally reaching node IV.
Similarly, the particular path from node OB which represents two
misses would not be a self-loop, but would lead to node OC, which
would then lead to subsequent nodes by the 31, 1, 1, ... strategy
depicted in Figure 1. The paths representing misses by all missiles A

at other nodes would be treated in the same manner. This case is not
worked out here since it adis nothing to the explanation of the

technique, merely representing a straightforward extension of the
diagram with no difference in the manner of solution except that it
requires more steps in the computer program.

The above four strategies were analyzed for a formation of four
attacking aircraft. The SSKP was taken as .75, and the multiple
target weighting factors were taken as 0.9, 0.8, 0.5, and 1.0 for
states 0, 1, 2, and 3, respectively, in accordance with the fact,
explained above, that the multiple target effects become less pro-
nounced as the number of targets increases. Therefore, the resulting
kill probabilities, Pn, were .675, 600, .375, .750, and 0 for states

0, 1, 2, 3, and 4, respectively, being 0 in state 4 since there are
no remaining aircraft at this point. The diagrams were used to
calculate, for each firing strategy, the probability of killing all
four targets as a function of the number of missiles fired. As an
example, the flow diagram for S3, 2, 1, 1, 1, ... , after assigning
path values and combining parallel paths, is shown in Figure 5.
The system gain can now be found by node absorption, Mason's rule,
or a combination thereof. For example, the quotient of polynomials
obtained for S3, 3, 3, 111, was:

n G Ai 0.224x 6 + 0.418x9 + 0.052x1 2

1 - 1.360x3 + 0.391x6 - 0.034x9 + O.O01x12

.224x 6 + .722x 9 + .946x 1 2 + .963x5 + .964x1

Thus, the probability of killing all four targets with, for example,
twelve missiles fired three at a time was .946. The results of the
calculations are shown in Figure 6. It is seen that SI, 1, 1, ... ,

provides a higher probabilityof killing all four targets than do the
other strategies when the number of-missiles to be fired is seven or
less. However, the probability then levels off rather sharply, and a
great many missiles would be necessary in order to exceed a probability
of .8. The curves for S2, 2, 2, ... , and S3, 3, 3, ... , have the same
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general shape as that for S1, 1, 1, ... , except that they tend to level.
off at a higher range of values. However, it would still be necessary
to fire a large number of missiles in order to attain a probability in
excess of .9. The curve for S3, 2, 1, 1, 1, ... tends to level off at
a high range of values, and it has the advantage of rising more quickly
to this range. The reason for this is fairly obvious, since this
strategy calls for firing a large volley at first and then smaller
volleys, taking advantage of the fact that the energy centroid of the
targets tends to remain more in the center of the formation if the
number of targets is large and that the probability of more than one
missile locking on the same target is lower for a large number of
targets. Although these effects are intuitively clear, the exact
manner in which they interact is not, and it is apparent that further
analysis along the lines suggested by Figure 6 would lead, by a kind
of dynamic programming process, to the optimal firing strategy for any
given situation if one is trying to maximize the probability of killing
all four targets by firing a certain number of missiles. If one is
interested in the probability of killing some specific number of the
attackers instead of all of them, as a function of firing strategy and
number of missiles fired, it is necessary only to delete all flow graph
nodes representing a number of kills greater than this.

If one is attempting to optimize some other aspect of the situation,
the information is generally available from Figure 6. For instance, the
expected kills per missile are plotted for each strategy in Figure 7.
It is seen that strategy S3, 2, 1, 1, 1, ... provides a higher number
of expected kills per missile than the others if five or more missiles
are fired. In order to obtain the true mathematical expectation, of
course, one would also need the probability of killing three, two, and
one of the attacking aircraft, which would necessitate calculations of
the system functions to nodes I, II, and III. The main contribution,
however, is provided by the probability of killing all four of the air-
craft, and the true expectations, although somewhat higher than the
ones in Figure 7, would not differ from them qualitatively, and one
would not ordinarily require a refinement of this nature until it was
apparent that the optimal strategy had been approached.

Although the above technique, utilizing representation of transition
probabilities by signal flow graphs and subsequent application of Mason's
rule to calculate system functions which indicate the effectiveness of
the relevant strategies, was used in conjunction with missile firing
strategies in this case, it is readily seen that it is applicable to a
variety of problems arising in military operations research and in other
situations involving stochastic duels and programming under conditions
of uncertainty. It also provides a facile method for analyzing, by
means of an electronic computer, the effects of a change in strategy
(or programming) or of engagement parameters or program elements and
therefore is amenable to gaming.
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THEORY AND ASSUMPTIONS UNDERLYING
THE DEVELOPMENT OF CSP-R*

Harold W. Kelley and Fred L. Abraham

U. S. Army Ammunition Procurement and Supply Agency
Joliet, Illinois

1.0 INTRODUCTION

This memorandum discusses the development of CSP-R, a continuous
sampling procedure involving normal, tightened, and reduced sampling inspection.
The memorandum discusses some of the considerations that led to its ýevelopment
and the objectives set for the procedure during development. It also provides
the necessary mathematical derivations used in the development. CSP-R plans
will appear in MIL-STD-1235A, "Continous Sampling Procedures and Tables for
Inspection by Attributes."

2.0 BACKGROUND

2.1 Reduction in Sampling Inspection

When confidence has been established that a manufacturing process is
stable and is producing a small percentage of defective material, the user of
continuous sampling plans often has the desire to reduce the amount of sampling
inspection being done.

2.2 CSP-M

MIL-STD-1235 contains a multi-level sampling plan, CSP-M, which allows
such reduction in sampling inspection. In spite of this feature, a survey of
Army Ammunition Plant: inspection elements indicated that CSP-M was considered
too complicated in terms of its administration to be useful. For this reason,
the CSP-M plans were generally ignored.

From a technical point of view, CSP-M contains another weakness; it is
not very responsive to a deterioration in quality if one of the reduced sampling
states has been reached. As an example, suppose that we are inspecting at
sampling rate level number five, AQL - .25%, i - 287. Suppose that a previously
low process average shifted to 1%, or four times the AQL. The probability
of continuing1 on one hundred percent inspection after finding a defect is only
.00000000946. In fact, there is only an 80% probability that the 100% inspection

1 -that is, going progressively through the checking states to the
100% inspection level.

*This article has previously appeared as Technical Memorandum QEM 21-230-6.
The remainder of this paper has been reproduced photographically from the
author's copy.
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level will be reached without tirst reaching a certain ievel k or star soate
(say, level 3) and then reverting to a lower level (level 4).

2.3 CSP-l

The simplest continuous sampling plan is, of course, CSPF. wherein
the finding of i consecutive defect free units on 100% inspection allows
samplinLg inspectioi to begin, during which the finding of a defect causes
" reversion to 100% or screening inspection. CSP-1, however, does uot allow
"a decrease in sampling inspection. Using a CSP-l plan with the same AOQL
but with a smaller sampling frequency may be a solution, but indiscriminate
shifting between plans without specified rules based upon the mathematical
impact of such shifting is, of course, not desirable.

2.4 CSP-2

CSP-2, while not allowing a reduction in the sampling frequency, does
delay the resumption of screening inspection under certain circumstances.
This feature is desirable in those situations where an alert of the screening =
"crew seems necessary, but it offers no special advantages insofar as allowing
a reduction in sampling inspection.

2.5 MIL-STD-105D

MIL-STD-105D allows a reduction in lot-by-lot sampling via the reduced
sampling technique. A history of good product quality allows a reduction in
sample sizes for subsequent inspections. At the same time, a history of
marginal product quality causes a tightened inspection to be initiated. This
tightened inspection sometimes requires a larger sample size, but in all
cases the probability of accepting a lot with a given percent defective2 is
lower under tightened sampling inspection.

3.0 OBJECTIVES

Consideration of the points mentioned above led to some general ideas
about what kinds of characteristics a continuous sampling procedure should
have, if this continuous sampling procedure were to allow a reduction in
sampling inspection after demonstration of a low process average.

3.1 Responsiveness

The procedure should be responsive to an undesirable shift in the
process average. This feature could be obtained by requiring a screening
sequence after finding a defect on a sampling sequence.

2 -other than 0% or 100% defective.
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3.2 Simplicity

The procedure should be both simple in design and relatively easy to
administer. Although simplicity is a somewhat subjective concept, it would
seem that, generally speaking, the fewer inspection states a procedure has, the
simpler the procedure would be. Likewise, a procedure with simple rules for
switching between sampling and screening states 3is simpler than one which
requires check states or similar devices. It was felt, therefore, that a procedure
with a relatively few number of states, with the switching rules similar to those
of CSP-l, would satisfy the objective of simplicity.

3.3 Average Outgoing Quality Limit

The development of the procedure should be based on the concept of an
average outgoing quality limit (AOQL), not only to provide a limit to average
outgoing quality which will not be exceeded no matter what quality of product
is submitted for inspection, but also to establish correspondence with CSP-l
plans and other continuous sampling plans from which a user can make a choice.

3.4 Relationship with CSP-l

Common sense dictated that the procedure require less inspection than some
norm for product of high quality and more inspection for product of marginal
quality. Accordingly, it appeared reasonable that the first step of the develop-
ment would be establishment of a norm. CSP-1 was selected as this norm because it
is the most widely used of existing CSP's by Army Ammunition Plants inspection
elements.

The attainment of this objective could be demonstrated by a comparison
o! Average Fraction Inspected (AFI) curves for the developed plans with AFI
curves for corresponding CSP-l plans.' An AFI curve shows the percentage of
units inspected over the long run when the process average is of a certain value.

3.5 Relationship with the Normal-Tightened-Reduced Concept of MIL-STD-105

Purely as a matter of standardization, it was decided to develop the
procedure along the lines of the normal-tightened-reduced concept of MIL-STD-105D.
Users of MIL-STD-105D could adapt easily, therefore, should they have occasion to
use this procedure in MIL-STD-1235A.

3CSP-1, for example, is the epitome of simplicity in this regard.
"A graphical illustration of this comparison is given in [7.11.
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4.0 THE DEVELOPMENT

With the objectives above in mind, development of the procedure began.
Several models were formulated and weighed against the objectives stated. Actually,
most of the objectives could be satisfied simply by designing them into the
procedure. The steps used to evaluate each model in terms of its statistical
properties are discussed below.

4.1 Determining the Parameters

After a general procedure was defined, which would satisfy, by its
construction, most of the objectives, it became necessary to investigate the
procedure's relationship with CSP-l. In order to satisfy the objective concerned
with this relationship, representative examples of CSP-l plans were selected. The
AOQL's for these plans were used in determining the parameters (sampling
frequencies and clearance numbers for the plans based upon the procedure under
investigation. Accordingly, the AOQ formula for each procedure had to be developeds
and the parameters subjected to variation until the maximum resulting AOQ for any
value of the process average, p, was close to the target AOQL. In general, the
sampling frequencies were held fixed and the clearance numbers were allowed to

vary. As can be seen from a study of Appendices A and B, this was no small task.

4.2 Computina the AFI Curves

Upon the determination of the parameters of the plan, the AFI formula
developed prior to developing the AOQ formula 6was used to find several points
of the AFI curve for the plan. The AF1 curves were then drawn on graph paper.

4.3 Comparinz AFI Curves

After determining the AFI curve for the plan under test, the AFI
* curve for the corresponding7 CSP-I plan was drawn on the same sheet of graph paper,

and the results were compared.

As discussed in 3.4 above, it was desired that a plan based on the
developed procedure require less inspection than a corresponding CSP-l plan for
product of good quality and more inspection than CSP-l for product of marginal
quality. Expressing this mathematically, we want

AFI (of CSP-l) > AFI (of developed plan) for p < p0 9 and

AFI (of CSP-1) < AFI (of developed plan) for p > pc, where p0

would be the "dividing line" of good and marginal quality. It was desired to

SSee Appendices A and B for the work involved in deriving the AOQ form Ala
for the selected procedure.6 See Appendix B for the AFI formula of the selected procedure.

7The method of establishing the correspondence was defined for each
procedure but in each case depended on the AOqL.
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keep p. within the interval (0, PL), where PL Is the value of the process average
for which the AOQ is equal to the AOQL. This choice, though arbitrary, seemed
reasonable.

4.4 Selection of Procedure

A procedure was finally selected which most satisfactorily fulfilled
the objectives. This procedure was designated CSP-R, and is described in block
diagram form in Figure I. This procedure, while generally satisfying all of
the objectives, does not strictly satisfy the objective relative to the AFI curves
when the clearance number is very small and at the same time the sampling frequency
is very large! Since plans with these parameters are not used extensively.
this limitation did not seem restrictive.

5.0 THE PROCEDURE

Although Figure I seems very self-explanatory, discussion of some of the
features of CSP-R seems in order.

There are three sampling states: normal, tightened, and reduced, and
three screening states; qualification, retrial, and tightened. It can be seen
that the three sampling states are parallel to the normal-tightened-reduced
concept of MIL-STD-105D, and this is, in fact, why they are labelled as such. The
rationale for the three screening states can he found in the discussion below.

5.1 How the Procedure Operates

Entrance into the inspection states was designed to be dependent upon
the demonstrated capability of the production process, as evidenced by favorable
or unfavorable inspection results. Under the system, the qualification state
Is initially entered. When evidence indicates the quality of an item has stabilized
at a satisfactory level, normal sampling is initiated. Continued evidence of
the process's capability to produce satisfactory or better quality permits the
reduced sampling state to be entered. Once reduced sampling is initiated, sampling
remains in effect until a defect is found, at which time the system immediately
ivvokes its qualification screening provisions.

The tightened inspection phase of the system was also designed to be
entered from the normal inspection phase. However, tightened inspection
provisions are invoked only when defect(ive)s fall too closely together; that
is, when the separation of defect(ive)s is less than a prescribed minimum
spacing. Tightened screening remains in effect until, sufficient evidence indi-
cates the process is capable of generating an item of at least marginal quality.
Once this evidence is established, tightened sampling is initiated. The normal
sampling state may then be re-entered if evidence of favorable inspection

8-those plans in MIL-STD-1235 associated with large AQL's and the lower
code letters.
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continues. If not, the system invokes its qualification screening provisions
and continues as before.

Similarity of provisions governing transitions between states in CSP-R
and those associated with the MIL-STD-105D scheme is apparent. However,
under the MIL-STD-105D scheme there is a transition from reduced to normal
sampling not only upon an unfavorable inspection result (rejection of a lot), but
also upon acceptance under the procedures of 10.1.4 of that Standard? We
therefore see that the reduced state is entered with difficulty, but left immediately
should doubt arise as to the continued high quality of material. The analogous
CSP-R provision is the requirement of re-entrance into the qualification screening
state. This provision, though admittedly drastic, was established to assure
performance of sufficient screening to guarantee that the previously good
quality level had not deteriorated.

The retrial screening provision of CSP-R was designed to represent a
reasonable balance between: (1) the need for assurance of the previously es-
tablished quality level for normal sampling and (2) a desire to avoid a prematuredecision to invoke the tightened provisions.

5.2 Prcperties of the Parameters

In common with most CSP plans, those of CSP-R were developed to be based
on AOQL and defined by the parameters fj and ik , where fj is the sampling
frequency in the Jth sampling state and ik is the clearance number in the kth
screening state. Also, in comnmon with most CSP plans, the parameters fj and ik
of CSP-R plans determine the AOQ function, as discussed previously.

To maintain the normal, tightened and reduced inspection concept, the
following relationship among sampling frequencies was used: fT.> fN > , where
the subscripts T, N, and R refer to tightened, normal, and reduced sampling,
respectively. Since CSP-l had been established as the norm, it was decided to
equate fN of CSP-R to f of CSP-l for equal AOQL and production interval size.
Consequently, sampling rates fT , fN and fR in CSP-R could be the frequencies
for any three consecutive code letters under CSP-I for a given AOQL. This was
conducive to simplicity.

Two values of ik were established for the procedure: i and i*. The
relationship between i and i* is i* - i1/2 (with a few exceptions). The choice
of this relationship between i and i* was predicated upon the need for more
stringent requirements for entering reduced sampling than for entering tight-
ened inspection. It had been noted that the MIL-STD-105D scheme generally
requires ten consecutively accepted lots (plus the defects in these ten lots

9-that is, when there is not strong evidence that quality is superior.
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being less than a prescribed minimum number) under normal samplIng to qualify
for reduced sampling, but only five consecutively accepted lots on tightened to
re-enter normal. Hence, the relationship between i and i* followed by analogy.
In addition, it was noted that the MIL-STD-105D scheme invokes tightened inspection
provisions if any two of five (analogous to i*) consecutive lots are rejected
on normal. CSP-R was designed to require tightened inspection when defeoct(ive)s
are separated by fewer than i* units; one defect(ive) being permitted in normal
sampling but not another in re-trial screening.

6.0 DERIVATION OF FORMULAE

As mentioned previously, the development of CSP-R required, upon setting
up a hypothetical procedure, the determination of the mathematical properties of
the procedure, so that appropriate comparisons could be made.

6.1 The Flow Diagram

The first step in constructing the appropriate mathematical model would
be to outline the procedure in flow diagram form. Figure I is the flow diagram
of CSP-R.

6.2 Events Causing a New State/Phase to be Entered

The next step is to look over each of the blocks in the flow diagram
and determine the events causing a state and/or phase to be entered. As used
herein, "state" refers to either qualification, retrial, or tightened screening,
or normal, tightened or reduced sampling. "Phase" refers to either the units
inspected during a sampling state, or the units skipped during a sampling state.

I-

Figure II shows tie events laid out in matrix form. The following
notation h.s been used in Figure II:

0 - Qualification state

N - Normal sampling state

T - Tightened sampling state

R - Reduced sampling state

N* - Retrial screening stateA

T* 0 Tightened screening state

The subscripts I and S in Figure II pertain to phases of sampling
states. I denotes the phase when a unit is being inspected, and S denotes the
phase when the units are being skipped.
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6.3 State Probabilities

The next step is to develop formulae for determining the percentage
of units, over the long run, which will reach the point of inspection during each
of the states. The development of these formulae for CSP-R is shown in Appendix A.

6.4 The AFI

Next, the AFI formula must be developed. This development is shown in
Appendix B for CSP.-R. The resultant formula is

AFI a PO + PN* + PNI+ PT* + PTI + PRI

where Pj is the state probability of state J, where the subscripts are defined

as in 6.2 above.

6.5 The A0Q

Upon determining the expression for the AFI, the AOQ formula can be
constructed rather simply. This is shown in Appendix B. The resultant formula is

AOQ -pVl - AFI11 - p(AFI)

where p is the probability of a defective unit.

6.6 Determining the Parameters

Using a certain value of AOQL and establishing values for the sampling
frequencies, the AOQ formula, through an iterative process, was used to develop
the values'of i and i* for the CSP-R plans which will appear in MIL-STD-1235A.
It should be pointed out here that the AOQL's used in MIL-STD-1235A are generally
less than the corresponding values in MIL-STD-1235. This is because the AOQL's
in MIL-STD-1235A have been matched (with certain limitations) to the AOQL's of
the MIL-STD-105D single sampling schemes (with the same AQL), treating the scheme
as encompassing normal, tightened, and reduced inspection. The effect of tightened
inspection caused the resultant AOQL's to be lower.

6.7 Computing the Curve Points

During development, the curve points (AFI and AOQ) were computed for
certain representative plans. Upon selection of the CSP-R procedure, curves for
each of the plans were computed on the Agency's RCA 501 digital computer. Addi-
tionally, Operating Characteristic (OC) Curves were computed. The derivation of
the formula for the OC Curves appears in Appendix C. These curves, should they
appear in MIL-STD-1235A, will show the percentage of units accepted on a sampling
basis, for each value of the process average, p.
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6.8 Assumptions Used In the Derivations

Throughout this discussion, we will assume Figure I defines an ergodic
Markov process. Thus, after many steps have occurred in the system the prob-
ability of being in any given state of CSP-R tends to become a steady state
probability which is independent of the number of steps but dependent upon the
state in which the system was at the last step and upon the transitional prob-
abilities.

We will further assume:

(1) All items are classified correctly, i.e. defect(ive) or
non-defect(ive);

(2) The production process is in statistical control;

(3) When samnling is in effect, every 1/fth unit is inspected with
screening required to begin with the •ext unit after a defective
is observed (see below); and

(4) Defective units found are removed but not replaced by non-

defectives.

We will digress here to briefly discuss the effect of these assumptions.

The assumptions above have been adopted largely because they lead to the
simplest mathematics. However, the use of these assumptions does not imply that
CSP-R plans are invalid if conditions other than those assumed apply. What their
use does imply is simply that the plans have been designed with these conditions
in mind. Deviations from the stated conditions will, in general, affect the
AFI function and result in values of AOQL higher than the theoretical values com-
puted from formulae derived herein. Although the modifications of the theoretical
AOQL values resulting from such deviations have not been thoroughly explored, some
treatment of alternatives has been made [7.11], [7.12J, [7.13], [7.14], [7.13],
[7.16].

Assumption (3) above has been adopted solely for mathematical convenience.
It is recognized that the theoretically b,.-st method of sampling would be proba-
bilistic, i.e., each unit would be inspected with probability fj, independent of
other units. However, strict adherence to this method in an actual production
situation would be impractical, if not impossible. In some instances, block (or
group) sampling may be required; in others, probabilistic or the assumed systematic
sampling method may be in order. Thus, MIL-STD-1235 provides for the selection of
sample units "so as to give each unit of product an equal chance of being inspected"
with the inspector allowing the interval between sample units to vary somewhat
rather than drawing "sample units according to a rigid pattern." The effect of
assumption (3) is to provide AOOL values of the same magnitude as those
computed under the assumption ol probability sampling.
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APPrNnTY A

DERIVATION OF STATE
PROBABILITY FORMULAE

A.- GENERAL

A.1.1 In deriving the steady state and state entrance probabilities, we will
define

p * Probability of a defective unit;

q 1 1-p - probability of a non-defective unit;

i W clearance number for states 0, N;

i* W clearance number for states N*, T*, T;

and for j W 0, N, N*, T, T*, R, let

Pj - Prob. (being in state j on the present step);

P - Prob. (entering state J);

fj - the sampling rate for state J.

A step will be defined as the inspection of a unit of product.

A.1.2 When the process is in states j - N, K, T, some units are being skipped
(passed) while others are being sampled and inspected. In the derivations the
skipped unit possibilities in these states will be considered. It is convenient,
therefore, to partition states j - N, R, T, into skipping and sampling phases.

Let
P 0 ?Prob. (being in the skipping phase of state J);

and
Pi- Prob. (being in the sampling phase of state J).

Then,
PJ Pis + PjI.
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Moreover, it is convenient to partition the skipping phase, iS, into skip unit
phase one and skip unit phase two. Therefore, let

P1s0 - Prob. (being in skip unit phase one of state J);

and
PjSi Prob. (being in skip unit phase two of state J).

Then,

PJS " Pis 0  + P is

for
jor N, R, T.

Skip unit phase one will be defined as that phase of j initially entered,
and skip unit phase two will be defined as that phase of JS in which all
subsequent skips occur. Skip unit phase one may therefore be viewed as being

a "transitional" phase between the last step in some previous state and the first
step in the present state.

The preceding state/phase symbols with primes will be used to denote the
probability of entering a given state/phase on the present step.

A.2 EXPREaSIONS FOR THE STEADY STATE PROBABILITIES

(1) P0  - Prob. (just entering state 0 on the last step) +
Prob. (entwa&lti 0, Lwo steps ago, and inspecting a
non-defective on the last step) + . . . +
Prob. (entering 0, i steps ago, and inspecting i-l
consecutive non-defective units)

P + P÷ q + P6q 2 + + Pq-

"- P; (1-qi)/p

(2) PN Prob. (being in the sampling phase of state N) +
Prob. (being in the skip unit phase of state N)

S P + P
N N
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(3) N - Prob. (just entering phase NJ on the last step)

I + Prob. (entering phase NJ two steps ago and

inspecting a good unit on the last step)
+ . + Prob. (entering NJ, i steps ago, and
inspecting i-1 consecutive non-defective units)

qp + PeIq + P qi + + PP qi-lNII + I

"- PI (1-qi)/p.

(4) PNS - Prob, (entering skip unit phase of N and passing

Ps (skipping) the next (i/fN)-i units)

[•k p, (llfN)-'3.

Similarly then,
(5) PT PT +

(6) PT PiI (l-qi*)/p

(7) eTs Pt [((/fT)-11

(8) PR PRI + S

)= Pi (l/p)
'I I

(10) PRs a [(I/RR)-1 )

(11) PT* a PT* (l-qj*)/p

(12) PN* P N* (l-qp*)/P
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A.3 EXPRESSIONS FOR THE STATE ENTRANCE PROBABILITIES

With the aid of FIGURE II we obtain

(13) P - Prob. (being in state 0 and finding a defective unit) +
Prob. (being in state R and finding a defective unit) +
Prob. (being in state T and finding a defective unit)

PO.p + PR1 p + .PRI' TI-

Combining (1), (6), and (9) with the above, yields

(14) P6 PO (1-qi) + Pi + P'T (I-qi*).
I TI

In a similar manner the other P3 ' a are obtained:

(15) P, - PI (-qi)

(16) P, * P÷* (O-qi) + PN, (1-q *)

(17) P0, qi . P1 qi* + P' qi

(17 Ph+s 1
2 P1 1

3  
.T.a~o PO'i + qi + + Pq1(18) Psm PSI q + PNq 2 +. ''' +P •q i '

(19) P'NI " PNo

(10) pT, . pT',q*
Si

(21) p,'S - ,TI + pjlq2 + + pI qi-

(22) p, - p!

(23) P' - P•qi
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(24) PR.q + RIq2 + + ÷ iq- P qil +RI R

(25) P'i N o

By definition

(26) P' - P' + P'Js 0s J i

Then, from (17) and (18) we obtain

(27) ' PSJS + P'Si

SN+Pkq + P q2 + . . + qi

pI'4 (1-q )/p

Similarly,

(28) Pi - Pq (l-qi*)/p
TS TI

(29) PT S PO (O/p)WnS R

A.4 EXPRESSIONS FOR THE STEADY STATE AND STATE ENTRANCE PROBABILITIES IN
TERMS OF KNOWN PARAMETERS.

A.4.1 Equations (14), (15), (16), (19), (22), (25), (27), (28), (29) define

nine equations in nine unknown entrance probabilities. These equations and their
associated steady state probabilities may be expressed in terms of parameters p,

,i*, and fj, which are assumed known. This section discusses the derivation
of such expressions.

A.4.2 In lieu of solving explicitly for each P3 and Pj, it was convenient to
first express each state entrance probability, Pj, in terms of PN
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Equat•n•s (14) through (29) were then used to obtain:

(14') P; - Ph, [qi + (1-qi) (lqi*)2J/qi

(15') PN* a P4I (l'qi)

(16') P+* - Ph, (1-qi) (I-q±*)/q±*

(22') P!N k I (1-qi) (1-qi*)

(25') PI, - Pqi

(27') P4 - P'I (1-q )/p
S I

(28') Pj' " P41 (- 1 ('±)/

(29') PiS Pý i/

When the preceding primed equations are substituted into equations (1), (12),
(Ul), (6), (9), (4), (7), and (10) respectively, the following steady state
probability equations are obtained in terms of Ph,:

(1') PO M P'

(3') PNI N1Ph (l-qi)/p

(41) Ps NS P [(1-q )/P] [(1lfN)-!]

(6') PT I P4 (1-qi) (l-qL*)2/p

(7') PTs " PkI [(l-qi) (l-qi*)2] [(I/fT)"l]/P
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(9') P - PNI qi/p

j,.2qiIA(P' P'S P q, [(1/fR)-']/P

(1' FT* " ý PI (l-'q) (l-qi* )21ql* p

(12') P -/ P' (l-qi) (1-qi*)Jp

Since . Pj I, equations (1'), (3'), (4'), (6'), (7'), (9'), (10'), Cli'), and

(12') cýn be combined to obtain

(30) P p qi* qi/D

where

D q i* (l-qi) [qi + (l-qi) (1-qi*)2] + qi (l-qi) (qi) A.

qi (j-qi) (j-qi*)Z + qi* qi (lsqi)/fN + q2i qi*/fR +

qi qiJ* (I-qi) (I-q i* )'/fT.

Expressions for the steady state probabilities in terms of known parameters can

now be obtained by substituting equation (30) into the primed number equations.

" P q i* (1-qi) [q' + (1.qi) (lqi*)Z]/D

"i) qi (lqi)/D(3") PNI q

(4) pNS q qi* qi (l-qi) [(1ifN)-I]/D

(6") PT = qi qi (1-qi) (l-qi*)2/D

(7") pTS q* qi (1lqi) (l-q)

(9) R = q2i qi*/D
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(10"1) PR m q2i q i [((/fR)-l]/D

(1111) PT q' (1-q') (1-qi*)2/D

(12"1) -N q i*qi (1-q') (1-q i*)/D
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APPENDIX B

DERIVATION OF AFI AND AOQ

B.1 THE AFI FUNCTION

3.1.1 By definition AFI is the expected ratio of the total number of units
inspected to the total number of units inspected or passed. Thus, by letting

KI the num '-r of units passing through the inspection system in
state j ;

K1 l the number of units inspected in state J;

KiS the number of units skipped (passed) in state J;

K1  KjI + K ;

amd K = jKj ; where j = 0, N, R, T, N*, T*,

we may write

(1) AFI = lin

SKj- ý Kj + JKjS

K0 + KN* + KT* + KNI + KTI + KRI

limr KO + + K + + K + K +K + K
K -4 KN* KT* Ni KTI RI  Ns TS K RS

P+P+ +

0 +PN* + PN PT* +PTI +PRI
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Using (1"), (3"), (4"), (6"), (7"), (9"), (i0"), (I1"), and (12") of A.4, APPENDIX
A, expressions for the AF1 in terms of the parameters p, q, i. i*, and f i are

obtaiid.

B.2 THE AOQ FUNCTION

Dodge and Romig [7.17], have given expressions for the AOQ functions under
two assumptions:

Case I: Defective units are removed and replaced by non-defective units.

Case II: Defective units are removed but not replaced.

Case two (II) is consistent with standard operating procedure in most
ammunition inspection situations. Accordingly, appealing to the Dodge and Romig
expression, we used the following:

([. - AFI] ; where
(I) AOQ - p(AFI)

AFI is as defined by (1) of B.i and p is the probability of a defective unit.
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AYFLNUIX C

DERIVATION OF O.C.

ey definition the fraction of product accepted on a sampling basis is the

,xpected ratio of the number of units accepted on a sampling basis to the total

number of units inspected or passed. Now, recalling the assumption that defec-

tLve units are removed but not replaced, the number of units accepted on a sampling

basis must obviously consist of only those units inspected and found non-defective

plus those units passed (skipped and therefore accepted) In the sampling inspection

states. Thus, appealing to the notation of A.1 of APPENDIX A, and B.1 of APPENDIX B,
we write for J - N, R, and T

(1) O.C. (%) - lim j + XlO
x 1 00

KK

S PN PT s R I T qPN + qPT +P] X 100.

Using the equations of A.2 and A.3 of APPENDIX A, it can be shown that

F NS f PN I [(i/fN)-"],

PRS RI [(i/fR)-11, and

PTS a P TI [(I/f T)-I]

Therefore, equation (1) above can be written as

(2) O.C. (%) 100 {[(/fN)-i + q] PNI + [(i/fR)-i + q]PRI +

[(l/fT)-1 + q] PTi}

100 f[(i/fN)-P] PN+ PRI +

(I/fT)-P] PTI}0
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AN EVALUATION OF LINEAR LEAST SQUARES COMPUTER PROGRAMS:
A SUMMRY REPORT

Roy H. Wampler
National Bureau of Standards

Washington, D. C.

ABSTRACT. Two linear least squares test problems based on fifth
degree polynomials have been run on more than twenty different computer
programs in order to assess their numerical accuracy. Among the programs
tested were representatives from various statistical packages as well as
some from the SHARE library. Essentially four Aifferent algorithms were
used in the various programs to obtain the coefficients of the least
squares fits. The tests were run on several different computers, in
double precision as well as single precision. By comparing the coef-
ficlencs reported, it was found that those programs using orthogonal
Householder transformations or Gram-Schmidt orthonormalization were much
more accurate than those using elimination algorithms. Programs using
orthogonal polynomials (suitable only for polynomial fits) also proved
to be superior to those using elimination algorithms. The most successful
programs accumulated inner products in double precision and made use of
iterative refinement procedures. In a number of programs, the coefficients
reported in one test problem were sometimes completely erroneous, containing
not even one correct significant digit.

1. INTRODUCTION. Since the time when the electronic computer began
to supplant the desk calculator as the chief tool for solving linear least
squares problems, numerous least squares computer programs have been written.
These programs have utilized a variety of computational. algorithms. Be-
cause least squares problems are by their very nature frequently ill-,
conditioned, the numerical accuracy achieved by a least squares program
strongly depends upon the choiceJ of the algorithm. Many programs have
been written which use methods appropriate for desk calculators but in-
appropriate for computers. Anscombe [1] has aptly remarked: "Textbooks
of statistical method display a wonderful unanimity in recommending com-
putational procedures that are suited to desk calculators but are perilous
for computers. Only with some determination chn the statistician break
himself of bad habits and become adequately infciwed about round-off error.'

The present study was undertaken to assess the numerical accuracy
of representative least squares programs from a variety of sources. Two
test problems, both fifth degree polynomials, have been run on more than
twenty different programs. Lncluded in the study were programs from the
B3RO Biomedical Computer Programs collection [141, the C-E-I-R Multi-Access
Computing Services library [10], the IBM SHARE library [23), the IBM System/360
Scientitic Subroutine Package [22), the Univac MATH-PACK [33] and STAT-
PACK t34] collections, and the Project MAC 7094 disk files [281. A listing
of the lourcem of the programs is given in Appendix A, together wi.h a brief
description of each program.
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precision as well as in single precision. This, of course, necessitated
certain changes in the original programs.

The programs included in this study used essentially four different
algorithms: orthogonal Householder transformations; Gram-Schmidt ortho-
normalization; orthogonal polynomials; and, Gaussian or Jordan elimination.

The lincar least squares problem may be briefly stated as follcws:
One has n observations or measurements of a "dependent" variable y, which
are statistically independent with common variance Q2 , whose expected
values are given by a linear function of the corresponding values of k
"independent" variables, xi, x 2 , ... , x, k k n. In matrix notation we
say that the n observations have expected values E(Y) = XB , where Y is an
n x 1 vector, K is an n x k matrix, and ý is a k x 1 vector of unknown
coefficients. Assuming that X is of rank k, the least squares estimates
of the coefficients are given by 3 = (X'X)-IX'Y. Other quantities of
interest are . - X a , the vector of predicted values; 6 = Y - Y, thn
vector of residuals; and s2 - V6• /(n-k), an estimate of the variance a

In running certain programs, modifications were occasionally made to
input and output formats. Other changes were made in five of the programs
using elimination algorithms because the original versions of these programs
failed to give solutions to the fifth degree polynomial problems. The
nature of these changes will be described in the discussion of the individual
programs in Section 7.

Three computers were used: the GE 235, the IBM 7094, and the Univac
1108. The 1108 which was used is located at the National Bureau of Standards,
and the 7094 which was chief.- used is located at Harry Diamond Laboratories,
Washington, D. C. The programs run on the 235 and the Project MAC 7094
utilized consoles at the National Bureau of Standards connected to computers
at other locations.

Previous studies appraising linear least squares programs and ccmparing
the results of different algorithms have been made by Cameron [9], Freund [18),
Bright and Dawkins (7], Zellner and Thornber £38], Longley [25], and Jordan
[24]. The present study differs from the earlier ones maihly by including a
larger selection of widely used and easily accessible programs.

A more detailed report of the present study is given in Wampler [36].
The more detailed version contains an appendix giving the individual coef-
ficients obtained in running each program, an investigation into the effect
of rounded input on the solution of a least squares problem, additional de-
tails pertaining to certain programs, and results from some additional test
problems. The longer report also includes several programs designed not
specifically for solving least squares problems but for solving n equations
in n unknowns, thus forcing one to use X'X and X'Y as input. Since it is
well known that this is not, in general, a good method for solving leas,
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squares Problems. these Droerams are omitted from the present summary-
report. (There was one outstanding exception among the programs requiring
X'X and X'Y as input. This was Newman's program, described in [30], which
requires integer iiuut aad us=.- iateger dLithnmetic and congruential methods
to obtain exact solutions.) The present report gives results of one pro-
gram (BJORCK-GOLUB) not included in the more detailed report.

It was outside the scope of the present study to make a detailed
comparison of algorithms with respect to efficiency of computation time
and storage requirements. The prog.ams which were included in this study
exhibited considerable variation in what quantities were calculated as
well as in the methods of calculation, and output ranged from meager to
copious. Moreover, no comparative examination of the outputs provided
by the programs was made. Rather, this investigation focused attention
on the performance of existing programs.

2. THE TEST PROBLEMS. The two test problems which were used
throughout this investigation are identified as Y1 and Y2. Both were

fifth degree polynomials, with the values of x being the integers 0, 1,

2, ... , 20. The "observations," Yl and Y2, were calculated from the fol-
lowing equations :

YI: y = 1 + x + x2 + x + X , x 0(1)20

Y2: y - 1 + .1 x + .01 x2 + .001 X3 + .001x4 + .00001 x5, x - 0()20

Thus, the values of Yl were integers having from one to seven digits, and
those of Y2 were five-decimal numbers ranging from 1.00000 to 63.00000.

If the least squares solutions were computed with no rounding error,
one would obtain

1 1.

6(Yl) ,M .001
.0001].o .00001

and for both problems the residual stmndard deviation would be zero.

For some programs the input required was the ýi values of x and y.
Other programs required, in addition, the powers x , x 3 , x 4 , and x 5 to be
entered as input. The input is listed in Table 5, along with the matrices
V'X and X'Y associated with the Lest problems.
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The two test problems, Y1 and Y2, were chosen because they are so
highly ill-conditioned that some programs fail to obtain correct solutions
while other programs succeed in obtaining reasonably accurate solutions.
Polynomial problems were chosen because polynomial fitting is an impoe cant
type of linear least squares problem which occurs frequently in practice.

The ill-conditioning of the two test problems can be described more
explicitly. One measure of the condition of a matrix A is the P-condition,
defined as

where X is the numerically largest eigenvalue of A and I: 1s the numerically
smallest eigenvalue of A. (See Newman [29, p. 240]).

For A - X'X, the 6 x 6 matrix associated with Y1 and Y2, the P-condi-
tion is 4.095 x 1013. In this respect, it is similar to the Hilbert matrix
of order 10, whose P-condition Is 1.603 x 101-3 (see Fettis and Caslin [16]).
The P-condition of the Hilbert matrix of order 11 is 5.231 x 1014. The
relation between the Hilbert matrix and the matrix X'X which arises in a
polynomial fit is discussed in Forsythe [17].

Most of the programs which were tested obtained more accurate solutions
for Y2 than for Y1. If we let A denote the 7 x 7 matrix

A XIX X'Y

YIX 0

we find that for Y2, P(A) = 4.095 x 101, whereas for Yl, P(A) = 6.829 x 1013,
indicating that the system involving Y1 is more ill-conditioned than that
involving Y2.

The test problem used by Longley [25] was also highly ill-conditioned.
For the 7 x 7 matrix X'X of his problem, the P-conditlon is 2.361 x 1019.

3. SUWhOARY OF THE RESULTS. Tables . to 4 present a brief stnunary
of the main results. A count, C of the number of correct significant
digits in each computed coefficient was obtained as follows:

Let ý3 (j 1, 2, ... , 6) denote the "true" value of the coefficient --

that is, th4 value computed with no rounding error. Let i denote Lne
value calculated by the computer. Tht-n
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I N~j. aj - .
-log 1 . if. 0anid $0

Cj =

-Log1 09 % -8j ifK - S # 0 and 6 0

D, the approximate number of decimal digits with

Swhich the machine computes, if B - j= 0.

The above approach to counting the number of correct digits in a
computed value has been used by Jordan [24] and others.

Tables 1 to 4, in the columns headed "Average Number of Correct

1 6
Digits" report C -C

i-i

From the above definition, a negative count can occur. For example,
If j M 1.0, and 8 1.36.0, we get C, - -2.130. This indicates that
6 is wrong by rougily two orders of mAgnitude.

For two programs reported in Table 1, BMDO3R run on the 7094 and
DAM run on the 7094, the count for suveral coefficients was made in a
different manner. The BMD03R program printed the coefficients in a
fixed-decimal format, with five decimals. The DAM program used a
floating-point format with only three decimals printed, A coefficient
printed as .00010, when the true coefficient was .0001, was given a
count of 2, and 0.100E01, when the true coefficient was I., was given
a count of 3. In such cases the assigned count may have been too small,
since the coefficients may have been calculated accurately to more digits
than were printed. In running these two programs on the 1108, the output
format was changed so that eight significanL digits were printed.

Eacii of the tables (I through 4) summniri . :3 set of results 1or a
particular maachne precision. Within each tabht: the various programs arc
given a numerical rank for each of the two test problems, with rank I
denoting the best performance according Lo the count C.

4. PROGRAMS USING ORTHOGONAL HOUSEHOLDER TRANSFORMATIONS. LSTSQ is
a program written by Peter A. Busingr using orthogonal Householder trans-
formations. This rlgorithm is described by U;onub 119'. and Busing.r and
Golub [8]. The program applies a sequence of orthogonal transformattons
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to the n x k ]east squares matrix X to obtain a decomposition X - OR.
where K Is upper triangular and Q'Q = r A pivoting strategy is used
so that at each step the colimn witlh th largest sum of squares is re-
duced next. Olr--I rn -t i t'.' I-C 2'%ti 4 L.. . trwP..J, the pLugLam tterates
to obtain a (possibly) im,,roved soiirion.

The BJORCK-GOLUB program uses the Householder transformation
algorithm described by Bjtrck and Golub [6]. This algorithm takes
advantage of the fart that X'6 = 0, where 6 is the vector of residuals,
to obtain the solution 0 in Xý = Y from the augmented system of n + k
equations:

Here 6 as well as B is included in the iterative refinement procedure.

Of all the programs included in this study, LSTSQ and BJORCK-GOLUB
appear to have given the best performance. In Table 3, which reports
the performance of eleven double precision programs, we see that LSTSQ
ranked first for Y1 and second for Y2, and that BJORCK-GOLUB ranked
first for Y2 and second for Y1. In Table 1, which reports the performance
of 20 single precision programs, we see that LSTSQ ranked first for Y1 and
fourth for Y2, and that BJORCK-GOLUB ranked second for Y1 and third for
Y2. Ranks 1 and 2 for the Y2 problem were obtained by ORTHOL and OMNITAB
(using ORTHO), two programs using Gram-Schmidt orthonormalization which
will be discussed in the next section. Table 4 reports the performance of
four programs which used single precision arithmetic except for the ac-
cumulation of inner products, where double precision arithmetic was used.
Here we see that LSTSQ and BJORCK-GOLUB tied to obtain the top rank for
Yl (having perfect scores of 8.000), but ranked third and fourth, respec-
tively, for Y2. In Table 4, we note that all four programs obtained
similar scores for the Y2 problem, with rank 1 corresponding to 6.530
and rank 4 to 6.227. I1 the Businger-Golub and Bj6rck-Golub algorithms,
it is recommended that all inner products be accumulated in double pre-

ausron. By comparing Tables 4 and 1 we see that when LSTSQ included this
feature, the average counts increased from 4.528 to 8.000 for Yl and from
5.840 to 6.279 for Y2. With all operations performed in double precision
(see Table 3), the counts increased to 14.643 and 16.293, respectively.

The BJORCK-GOLUB program displayed similar improvements in accuracy when
inner products were accumulated in double precision and when all opera-
tions were carried out in double precision.

Another program using Householder transformations was ALSQ, a
program containing no pivoting and no iteration. In Tables 1, 3, and 4
we see that ALSQ performed not quite as well as the LSTSQ and BJORCK-
GOLUB programs which included these features, except in one instance. In
this one instance, Y2 in Table 4, we note that its performance was slightly
better than that of the other programs in this category.
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Sl, GRAS. f-RTHONORMALIZAT7A1ON. ORTHO is a
program written by Philip J. Walsh using a Gram-Schmidt orthonormalisxtion
process. This algorithm i s described by Davis and Rabinowitz [131, Davis
[12], and Walsh [35]. ORTHO exists as a FORTRAN program, an ALGOL pro-
cecure, a BASIC program, and as a routine of the OMNITAB program [21].

Starting with the n x k matrix X, the Gram-Schmidt process of ORTHO
obtains p - XT'l- and V - T'-l QY, where T- 1 is upper triangular and #'0t Ik.
This algorithm includes a feature of reorthonormalizing the vectors of 4,
proceeding from a first approximation Tj to a (usually) better approxima-
tion 0j. From Table 1 it is clear that this reorthonormalizing is vital
to the algorithm, for ORTHO's good performance in handling Y1 and Y2
deteriorated when this iteration was omitted. For Yl, the count of
correct digits dropped from 4.137 to -1.976, and for Y2 the drop was from
5.464 to 0.419. In Table 3, nlso, we see that in double precision the
omission of the iteration resulted in a loss of about five correct digits
for both problems.

*i Ok the six programs in Table 2, LSFITW***, written in BASIC, ranked
* first on both problems. We note that Table 2 includes no Householder

transformation programs.

The ORTHO program was also run in a version using single precision
S F except for the accumulation of inner products, where double precision

was used. In Table 4 we see that there were four programs in this category,
and ORTHO ranked third for Y1 and second for Y2.

ORThOL is a ,program using a modification of the Davis-Rabinowitz
''algorithm. It differs from ORTHO in twvorespectst" (1) the iteration

procedure includes the dependent variable as well as the independent
variables; and, (2) before any other operations are applied to the
matrix X, from each element of each vector of X, the truncated mean of
that vector is subtracted. (The "truncated mean" denotes the largest
integer less than or equal to the mean if the mean is nonnegative, and
the smallest integer greater than or equal to the mean if the mean is
negative.) ORTHOL obtained the top rank for Y2 in single precision, but
ranked sixth for Y1 (Table 1). In double precision (Table 3), it ranked
third on both problems.

6. PROGRAMS USING ORTHOGONAL POLYNOMIALS. Since the two test problems
are both polynomial fits, we were able to test programs in which the
algorithm used orthogonal polynomials. This method, described by Forsythe
[17], is attractive because it generally requires many fewer operations
than other methods.

Two such programs v,ere included in this study. One was the UNIVAC
1108 MATH-PACK ORTHLS toutine [33]. The other was POLFIT, an anonymous
program written in BASIC.
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In Tables 1, 2, and 3, we see that the performance of the orthogonal
polynomiai programs is not as good as that ot the Householder transtor-
mation and the Gram-Schmidt programs (with iteration), but the performance
is better than that of any of the programs using elimnAltion algorithms.

7. PROGRAMS USING ELIMINATION ALGORITHMS. The majority of the
programs tested in this investigation used some form of an elimination
algorithm. Although this was the most popular method, it was the least
successful. None of these programs performed as well as those using
Householder's transformations, Gram-Schmidt orthonormalization (with
iteration), or orthogonal polynomials.

Within this class of programs, there were several variations in
the method of obtaining the least-squares coefficients. In some cases,
the matrix X'X was inverted, after which the inverse was postmultiplied
by X'Y. One program inverted the matrix Z'Z where the vectors of Z were
obtained from the vectors of X by subtracting the mean of each vector from
every element of that vector. A number of programs obtained the solution
by inverting a matrix of correlation coefficients. The five stepwise
regression programs made use of matrix partitioning in connection with
inverting a matrix of correlation coefficients.

The five stepwise regression programs were BMDO2R, MPR3, the STAT-
PACK program RESTEM, WRAP, and STAT20***. They all, to a greater or
lesser extent, follow Efroymson's algorithm [15]. Tables 1, 2, and 3
give the results of these five programs.

In running the two test problems on three of the stepwise programs,
namely, BMDO2R, RESTEM and STAT20***, calculations stopped before the
solutions were obtained. These programs at various steps calculate an
F-level in connection with entering or removing variables, and a point
was reached where this F-level was calculated to be negative because of
rounding error. Since this condition caused the calculations to stop,
certain steps of the algorithm had to be bypassed to obtain the final
solution. These steps were not, however, connected with the calculation
of the least squares coefficients.

WRAP, the program with the lowest rankings in Table 1, computed
coefficients which were exceptionally far from the true values. These
coefficients -are listed below.
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I
Y1 Y?

True E :omputed___ True 6 Computed S

1. 2991622. 1. -33.84546
1. -6065892. .1 71.54880
1. 2218821. .01 -26.16913
1. -296194.5 .001 3.493256
1. 16462.20 .0001 -. 1936966
1. -322.5731 .00001 .003812985

Two other BMD programs, in addition to BMDO2R mentioned earlier, were
tested. These were BMDO3R, Multiple Regression with Case Combinations,
which inverts a matrix of correlation coefficients, and BMDO5R. Polynomial
Regression, which inverts the matrix Z'Z where the vectors of Z are formed
from the vectors of X by subtracting the mean of each vector from every
element of that vector. All the crucial operations of BLDO5R, such as
the forming of inner products and matrix inversion, are carried out in
double precision. The performance of BMDO3R and BMDO5R is shown in
Tables 1 and 3, respectively.

DAM is a general-purpose computer program for data processing and

multiple regression [31). In running the two test problems on DAM on
the 1108, computations stopped after a fourth degree polynomial was
fitted. It was found that a computed variance was zero and that this
condition causes the computations to stop. By bypassing the checks on
this computed variance, results for fifth degree fits were obtained.
On the 7094, however, the fifth degree results were reached without any
such difficulties. DAM's performance on the two computers is given in
Table 1.

The program POLRG is the polynomial regression program of the IBM
System/360 Scientific Subroutine Package [22]. We see from Table 1
that the single precision version of POLRG obtained rather low scores
on both test problems. A double precision version of POLRG was also
run, and the performance here as reported in Table 3 was comparable to
other programs using similar elimination algorithms.

The user of POLRG specifies m, the highest degree polynomial to be
fitted, and the program automatically reports the results of fitting
polynomials of successively increasing degrees, starting with the first
degree. If there is no reduction in the residual sum of squares between
two successive degrees of polynomials, the program stops the problem
before completing the analysis for the highest degree specified. In
running both test problems in single precision the analysis stopped
after degree four, and in lieu of a fifth degree polynomial fit, the
message "NO IMPROVEMENT" was printed. In order to complete the calcula-
tions for the fifth degree, the checks on "Improvement" were bypassed.
In the double precision version, fifth degree results were obtained
without any such alterations.
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Each of the two STAT-PACK programs, GLH, General Linear Hypotheses,
and REBSOM, Back Solution Multiple Regression, has its individual features,
L.AL fuL LLL LWU Lest probiems tne solutions were carried out in the same
manner, so that the coefficients obtained from the two programs were
identical, as is indicated in Table 1. Both programs invert X'X by calling
the same matrix inversion subroutine which uses a Gauss-Jordan elimination
scheme with maximal column pivoting and row scaling.

The BASIC program LINFIT*** in order to obtain a inverts the matrix

A • XIX XYly

LY'x •l

whose inverse, if it exists, is

S(x'x)" + 00' -0

FF

whos invrse ifiixiti

"1y1. 2 -^i lyi2 v
-y"~" - y'Y

~y1 2-y'k lyiT7v

When Y = Y, the matrix A is singular. In the two test problems Y Y,
so that the matrix A, if it were formed in the computer without any
rounding error, would be singular. But A, for Yl and Y2, contains 14-
digit numbers, whereas the 235 computer works with approximately nine-
digit numbers, so that rounding of the elements of A is inevitable, and
the version of A contained in the computer is not singular. An "inverse"
was obtained, and from this 8 was immediately cooputed. Table 2 gives
the results.

LSCF--*** and STAT21*** are two BASIC progTams available in the
C-E-I-R Multi-Access Computer Service; results are given in Table 2.
LSCF--***, which obtains the coefficients by inverting V'X and then
post-multiplying the inverse by X1Y, had the lowest rankings of Table 2.
STAT21*** obtains (X'X)-l and B by applying Jordan elimination to X'X
and X'Y.

The LINFIT program included in Table 1 is one of eighteen statistical
routines described by Miller [28] which exist in the Project MAC* 7094 disk
files. The two test problems were run on the LINFIT program on a time-

*A description of Project MAC is given in Crisman [11).
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shared computer via R rpmnte "c"nic rc.=a..;a iLq wiLh Project MAL.
The method used by the LINFIT program is not given. By conjecture, it
ha- been included in this section among programs using elimination
al.gorithms .

8. OTHER RECENT ALGORITHMS. Some other algorithms apparently of
high quality which have been published in the last few years were not
included in this study. Two such algorithms are given by Bauer [2] and
Bj rck 15].

Bauer [2] gives an ALGOL procedure using iterative refinement for
finding the least squares solution of X8 - Y, where X is n x k (k < n)
of rank k and Y is n x p. The procedure is based on the decomposition
of X into UDR where U is n x k with orthogonal columns, D - (U'U)-I, and
R is upper triangular. This decomposition yields a triangular system
RR8 - U'Y which is solved by back substitution. The reduction to
Rt - U'Y is carried out by a Gaussian elimination scheme, but with a
suitably weighted combination of rows used for elimination instead of
a single row.

Bjbrck's algorithm [5] (see also Bjbrck 13], [4]) using a modified
Gram-Schmidt orthogonalization process, has certain features in common
with the Bjorck-Golub algorithm discussed in Section 4 above. Two such
features are solving the system of n + k equations

SI X 6 Y

to obtain a and 8 , and inclusion of 6 as well as a in the iterative
refinement procedure.

Both the classical Gram-Schmidt orthogonalization process and the
modified Gram-Schmidt orthogonalization process, as described by Bjorck
[3], decompose the matrix X into QR where Q'Q is diagonal and R is upper
triangular. In the classical procedure, at the i-th stage, the i-th
column vector is made orthogonal to each of the i - 1 previously ortho-
gonalized column vectors; this is done for column indices i u 2, 3, ... , k.
In the modified procedure which Bj6rck uses, at the i-th stage, the
(k - i + 1) column vectors indexed i, i + 1, ... , k are made orthogonal
to the (i - l)-th column vector; this is done for column indices i - 2, 3,
S... k. Jordan [24] shows why the modified procedure is superior to the
classical procedure. Bjorck [3] states that his modified Gram-Schmidt
procedure is equivalent to Bauer's method using weighted row combinations
mentioned above. Bj~rck's algorithm is generalized to handle the case
where X is of less than full rank; here, linear constraints are entered.

113



requirements of his algorithm, and he compares the number of operations
needed with the corresponding number needed in the Bj6rck-Golub algorithm
[6].

9. CONCLUSIONS.

(1) Computational procedures appropriate for desk calculators
may be perilous for computers.

(2) Of the four prccedures which were included in this study,
orthogonal Householder transformations and Gram-Schmidt orthonormaliza-
tion proved to be the beat. Orthogonal polynomials ranked next. Elimina-
tion methods were the least sliccessful but the most popular.

(3) Programmers who have been writing least squares programs,
especially for statistical packages, have often not been taking advantage
of the advances in this area made by numerical analysts in recent years.

(4) The importance of accumulating inner products in double precision
cannot be overstressed. A number of recent papers on least squares computa-
tions have emphasized thi' point. These include Businger and Golub [8],
Bauer [21, Golub and Wil~inson [20], Bjarck and Golub [6], and Bj~rck 15].
On many third-generatio computers which have double precision built into
the hardware, double prdcision arithmetic is quite efficient.

(5) Iterative re inement is another valuable feature of recent
algorithms. Five prog ama included in the present study (BJORCK-GOLUB,
LSFITW***, LSTSQ, OR O and ORTHOL) made effective use of iterative re-
finement, and the two algorithms described in Section 8 both include
this feature. Golub and Wilkinson [20] give a discussion of this topic.

(6) The users of least squares programs can take certain pre-
cautionary steps to gain an awareness of whether or not a rounding error
problem exists. Among the suggestions which have been made here are the
following:

(a) Run test problems where the coefficients are known
(Cameron [9]).

(b) Transform the data; e.g., by subtracting means (Freund
[18], Longley [25]).

(c) Do the calculations several times, scaled differently each
time (Zellner and Thornber [38], Longley [25]).

(d) Shuffle the columns of X and run the problem more than
once (Langley [25]).
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(ý) Check wnetlier X'5 - 0 (Longley [251).,

(f) Use double prevision arithmetic (.'reund [18]).

(g) Follow the initial fit by a fit to Y, the predicted values
(suggested by J. M. Cameron; see Wampler [361).

(7) In any mathematical calculation carried out on a computer, it
is desirable to know whether an accurate solution has been obtained or
whether the result of a calculation is contaminated'by rounding error
to such an extent that it is worthless. This goal has been achieved in
some areas. Martin, Peters, and Wilkinson [27], In their paper giving an
algorithm for solving Ax a b, where A is an n x n positive definite matrix,
state that their procedure "either produces the correctly rounded solutions
of the equation Ax = b or indicates that A is too ill-conditioned for this
to be achieved without working to higher precision (or is possibly singular)."
Similarly, Wilkinson's program [37) for the solution of an ill-conditioned
n x n system of equations Ax a b, "gives either a solution of the system

i •which is correct to working accuracy or alternatively indicates that the
system is too ill-conditioned to be solved without working to higher pre-
cision and may even be singular."

It appears that the goal set out above has now been achieved in the
linear least squares programs of Bj•rck and Golub 16) and Bj~rck [51. TheS~authors state that their procedures may be used to compute accurate solutions
-nd residuals to linear least squares problems, but that the procedures will
fail when X modified by rounding errors has less than full rank, and that
they will also fail if X is so ill-conditioned that there is no perceptible
improvement in the iterative refinement. The user is easily informed of
these situations.
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TABLi SLUMAI L*' PROGRFWS RUN IN SINGLE PRECISION - 8 Digits

Average Number of
Corroct Digits Rank

Program CoMputer AlgoriTii* 71 Y2 f T2

ALS; 1108 RT 4.098 5.368 4 6

BJORCK-GOLUB 1108 HT 4,393 5.950 2 3

BMDO2R 1106 E -O.1O6 1.981 13 15

B1XDO3R 7094 E 0.742 1.721 9 17

BIWA3R 1108 E -0.123 2.287 14 13

DAM 7094 E 1.389 2.312 8 12

DAM 1108 E -o.264 2.622 17 10

LINFIT (Miller) 709h ? -2.756 -0.301 19 19

LSTSQ 1108 HT 4.528 5.840 1 4

MATH-PACK, ORTHLS 108 OP 2.1168 4.363 7 7

MPR3 7094 z -0.140 1.856 15 16

OMNITAB (Ortbo) 7094 OS 3.954 5.968 5 2

""1SITAB (Ortho) 1108 aS 4.137 5.464 3 5

,1RTHO (no iteration) 1108 05 -1,976 0.419 18 18

ORTHOL 1108 OS 3.59Y 6.197 6 1

POLRG 1108 3 -0.191 2.280 16 14

STAT-PACK, OLH 1108 E 0.066 2.767 U1 81

STAT-PAUK, REBSOM 1108 E 0.066 2.767 111 8a

STAT-PACK, RESTEM 1108 E 0.651 2.407 10 ii

WRAP 709h E -5.300 -2.871 20 20

*E a Elimination method; GS - Gram-Schmidt orthopormalization; HT - Orthog-

onal Householder transformations; OP - Orthogonal polynomials.
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TABLE 2 SU1RY OF PROGRAMS RUN IN SINGLE PRECISION - 9 Digits

Average Number of
Correct Digits Rank

Program Computer lgoritm* Y1 Y2 Y1 12

LINFIT*** 235 E 0.905 2.894 4 5

F-. 235 E 0.308 2,483 6 6

LSFITW*** 235 OS 4.102 6.354 1 1

POLFIT 235 OP 3.349 5.922 2 2

STAT20,** 235 E 0.612 2.920 5 4

STlT21i* 235 E 1.169 3.183 3 3

"E.- Elimination method; OS Oram.-Sohmidt orthonormalization;

OP - Orthogonal polynrmials. 3
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IABLE 3 SUYM4RY OF PROGRA.1S RUN IN DOUBLE PRECISION - 18 Digits

Average Number ofCorrect Digits Rank '

Program Computer Algorithmi* Y YDg2 nt Y2

ALSQ 1108 HT 12.667 15.322 5 5

BJORCK-GOLUB 1108 HT 13.580 17.057 2 1

BM02R 1108 z 9.645 12.e65 7 7

BMO5R 1108 9 9.368 11.791 9 10

LSTSQ 1108 HT 14.643 16.293 1 2

MATfi-PACK, ORTHLS 1108 OP 12.098 14.461 6 6

CTHO 1108 OS 13.188 15.514 4 4

CTHO (no iteration) 1108 GS 7.963 10.3514 11

ORTHOL 1108 0S 13.212 15.604 3 3

POLRO 1108 E 9.290 11.806 10 9 4

STAT-PACK, R7.STEM 1108 E 9.494 12.019 8 8

TABLE 4 SUMMARY OF PROGRAMS RUN IN SINGLE PRECISION (8 Digits) WITH

INNER PRODUCTS ACCUMULATED IN DOUBLE PRECISION (18 Digits)

Average Number of
Correct Digits Rank

Program Computer Aloihf fl Y2 Yi Y2

ALSQ 1108 HT 3.506 6.530 4 1

WORCK-OOLUB 1108 HT 8.0M0 6.227 A 4

LSTSQ 1108 HT 8.000 6.279 1* 3

CTHO 1108 GS 3.904 6.459 3 2

*E - Elimination method; GS - Gram-Schmidt orthonormalisatiota; HT O rthog-

onal Householder transformations; OP - Orthogonal polynomials.

121



II¥

X Yl Y2
0. 1. 1.00000
1. 6. 1.11111
2. 63. 1.24992
3. 364. 1. 4 27534. 1365. 1. 6 5984l
5. 3906. 1.96875
6. 9331. 2.30336
7. 19608. 2.94117
8. 37449. 3.68928
9. 66430. 4.68559
10. 111111. 6.00000
11. 177156. 7.71561
12. 271453. 9.92992
13. 402234. 12.75603
14. 579195. 16.32384
15. 813616. 20.7e125
16. 1118 481. 26.29536
17. 1508598. 33.05367
18. 2000719. 41.26528
19. 2613660. 51.16209
20. 3368421. 63.00000

MATRIX X'X ASSOCIATED .WITH THE T&T PROBLEMS

21. 210. 2870. 441 00. 722666. 12333300.
210. 2870. 4l1oo. 722666. 12333300. 216455810.

2870. 4410o. 722666. 12333300. 216455810. 3877286700.
44a100. 722666. 12333300. 216455810. 3877286700. 70540730666.

722666. 12333300. 216455810. 3877286700. 70540730666. 1299155279940.
12333300. 216455810. 3877286700. 70540730 66 6 . 12993.55279940. 24163571680850.

MATRIX X'Y FOR Y1 MATRIX X'Y FOR Y2

13103167s 310.39960
229558956. 5058.55410

41066845h46. 87258.40800
7464 7573242. 1549291.38666

1373802809082. 28043466.66600
25537373767266. 514843723.4685o

122



APPENDIX A

SOURCES OF THE PROGRAMS, !..TH BRIEF DESCRIPTIONS

ALSQ. A FORTRAN IV subroutine to solve the linear least squares prob-

lem, written by 0. W. Stewart, III, Union Carbide Corp., Oak Ridge, I

Tennessee (present address: University of Texas, Austin, Texas). This

program uses a modification of the Businger-Golub algorithm [8 ].

BJORCK-GOLUB. A FORTRAN V program to solve the linear least squares

problem, written by Roy H. Wampler, National Bureau of Standards, using

the Bjdrck-Golub algorithm [6 2.

BMDO2R, Stepwise Regression. One of the Biomedical Computer Programs,

written in FORTRAN [141.

BMDO3R, Multiple Regression with Case Combinations. One of the

Biomedical Computer Programs, written in FORTRAN tiE].

BMOSR, Polynomial Regression. One of the Biomedical Comuter Pro-

grams, written in FORTRAN [IE4.

DAM. A general purpose computer program for data processing and

multiple regression, written in FORTRAN by Rudolf R. Rhomberg, Lorette

Boissonneault, and Leonard Harris, International Monetary Fund [31].

LINFIT. A program which fits a linear function to collected data via

least squares. Optional constraints may be applied to the fitting

coefficients to make them non-negative, add to a constant, etc. One

of eighteen statistical routines written by James R. Ailler (28].

This library of routines exists in the Project FAC 7094 in the disk

files of user number T169 2750.

123



LIIFIT*.• . A program written in BASIC for linear least squares curve

fitting and computing correlations. Origin: Dartmouth College, Hanover,

N. H. Available in the C-E-I-R Multi-Access Computer Services

library (10o.

LSCF--***. A least squares polynomial curve fitting subroutine written

in BASIC. Origin: Dartmouth College, Hanover, N. H. Available in the

C---I-R Multi-Access Computer Services library [102.

LSFITW*H*. A least squares curve fitting program written in BASIC.

Adapted by John B. Shumaker, National Bureau of Standardsfrom Philip

J. Walsh's ORTHO algorithm (35). Available in the C-Z-I-R Multi-Access

Computer Services library [10].

LSTSQ. A FORTRAN IV subroutine which solves for X the overdetermined.

system AX B 3 of m linear equations in n unknowns for p right-hand

sides. Witten by Peter Businger, Computation Center, University of

* Texas (present addreses Bell Telephone Laboratories, Murray Hill,

No J.), using the Businger-Oolub algorithm (8 3.

MATH-PACK. ORTHLS, Orthogonal Polynomial Least-Squares Curve Fitting.

One of the Univac 1108 MATH-PACK programs, written in FORTRAN V (333.

XPR_, Stepwiee Multiple Regression with Variable Transformations. A

FORTRAN II program written by M. A. Efroymson, Esso Research and

SIgineering Co., Madison, N. J., using the Efroymson algorithm [1%).

Available in the SHARE library: 7090-02 31145MR3 (233.

124



I

OMJT'T'A S te'...er. 1 pular€p CCeputta. prueram ior statistical and J

numerical analysis. Developed at the National Bureau of Standards by

Joseph Hilsenrath et al [21]. Now available in an A. S. A. FORTRAN

version, O,1NITAB allows the user to commiunicate with a computer in an

efficient manner by means of simple English sentences.

ORTHO. A program written by Philip J. Walsh, National Bureau of

Standards (present address: University Computing Co., East Brunswick,

N. J.), which uses a Gram-Schmidt orthonormalization process for least

squares curve fitting. ORTHO exists as an ALGOL procedure (35], a

FORTRAN program, a BASIC program (see LSFITW;*** above), and as a

routine of OMNITAB (21], where it is called by the commands FIT and

POLYFIT.

ORTHOL. A modification of the Davis-Rabinowitz orthonormalization

algorithm [12), (13), written in FORTRAN 11 by James W. Longley, Bureau

of Labor Statistics, Washington, D. C., and Roger A. Blau, Bureau of

Labor Statistics and Carnegie-Mellon University, Pittsburgh, Pa. [26).

POLFIT. An anonymous program written in BkSIC for least squares

polynomial curve fitting using orthogonal polynomials.

POLRO, Polynomial Regression. One of the programs of the IBM

System/360 Scientific Subroutine Package written in FORTRAN IV [22).

STAT-PACK, OLH, General Linear Hypotheses. One of the Univac 1108

STAT-PACK programs, written in FQRThan: V (34).

STAT-PACK, RBBSOM, Back Solution Multiple Regression. One of the

Univac 1108 STAT-PACK programs, written in FORTRAN V [34].
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STAT-PACK RES , Stepwise eultiple Regression. One of the Univac

1108 STAT-PACK programs, written in FORTRAN V (341. 1
STAT20***. A program written in BASIC for stepwise multiple linear

regression. Written by Thomas S. Kurtz, Dartmouth College, Hanover,

NJ. F. Available in the C-E-I-R Multi-Access Computer Services

library [101.

STAT21*". A program written in BASIC for multiple linear regression

with detailed output. Written by Gerald Childs, Dartmouth College,

Hanover, N. H. Available in the C-E-I-R Multi-Access Computer

p Services library (10].

WRAP, Weighted Regression Analysis Program. A FORTRAN II program

written by M. D. Fimple, Sandia Corp., Albuquerque, New Mexico.

Available ift the SHARE library: 7090-02 3231WRAP [23].
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ERROR ANALYSIS FOR CONTROL SYSTEMS

T. H. Slook
Temple University and Frankford Arsenal

Philadelphia, Pennsylvania

bA

I. INTRODUCTION. From the days following World War II to the
t present time, many research papers and books have been written on

feedback control systems. In almost every case, these publications
emphasize the analysis and design of such systems. Relatively few
pages have been devoted to error analysis techniques for control
systems. The important contributions which this paper makes are:

A. To exhibit an error analysis technique for an arbitrary control
system; and,

B. To prove, in a general setting, three theorems relating the
variances and power spectral densities of the inputs and outputs of
such systems. 2

II. MEASURES OF EFFECTIVENESS. Every measure of effectiveness
for a control system involves, either directly or indirectly, some
knowledge of system errors. To demonstrate this point and to make this
paper more meaningful and less abstract, let us consider a fire control
system (FCS). Such a control system includes tracking servos, data
transmission devices, conversion elements, analog and/or digital
computing components and weapon pointing servos, each, of which,
possesses errors and contributes to the overall system output errors.
Clearly, the magnitude and frequency of the output errors determine
the control system's effectiveness.

Two of the many measures of effectiveness for a FCS are hit
probability and kill probability. To be specific, the single shot
engagement hit probability is obtained by evaluating

1. [ (A(22/oC•d21n
P= 1 -Jo Ll - d2) bdx11

P -x dx

where

n - the number of rounds for an engagement,

A - target area,
S~2

ab - variance of the bias, and
S~2

a d - variance of the dispersion.
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In this paper, the bias b is the deviation of the center of impact of
n rounds from the target center, and the dispersion d is the square
root of the average value of the square of the deviations of the rounds
from the center of impact.

Observe that P, defined above, is a function of and a These

variances, whether used to calculate P or any other measure of effective-
ness, depend upon the variance in the error in the elevation a and the

€E
2

variance in the error in train a of the gun tube or launcher throughout
sT

the firing interval and each of these statistical measures depend upon:

a. errors in the inputs to the control system,
b. non-ideal system element errors,
c. system function approximations, and
d. vehicle-target paths.

Let us agree to call the above error sources the system input errors
for a FCS. Observe that (a), (b), and (c) are systeminput errors
for every control system, and that (d) in an additional error source
that must be considered in a FCS error analysis.

The fact that every control system consists of an assemblage of
a finite number of components, each of which has measurable characteristics,
generates, in a natural way, a finite number of equations relating the
inputs and outputs of the control system. These equations are called
the system equations. Some of the system equations may be empirical.
For example, the ballistic functions are empirical equations in a FCS.

A relatively easy and straightforward error analysis is possible
when the system equations are not differential equations. However,
many control systems and most FCS generate an independent set of dif-

ferential equations. The inclusion of differential equations complicates
the solution of the system of error equations. This we now explain.

III. SYSTDI ERROR E UATIONS. Consider a FCS of q system
elements having a independent inputs. This means that at each
instant of time, every system element will have at most X - 1 , x2 ,...,x,}
inputs from outside the FCS and at most Y 1- 0Y, Y2  ...'' yq} inputs

from within the FCS; see Figure 1. Observe that the external inputs
x Q - 1, 2, ... , a) and the system element outputs Yk (k - 1, 2, ... , q)

are functions of time and it is customary to assume that these inputsand outputs have continuous first derivatives.
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In Figure 1, the output at time t of the ith system element
having {x1 , x4 , ... x4 J, a subset of X, as external inputs and

'yi }, a subset ofY, as internal inputs is
1 2 pi

described by

•.• ~Y gi " 81.(xiI xi2 'xri yl. Yi2'''Yi .... Yipl'[I-]:.
81(2 r Xj,., 1  ~2 [11i1

Those x's and y's which are not inputs to the ith system element are
not in the domain of gi' The function gi is called the performance

thh
operator of the ih system element, and it determines the output Y,1 of

this system element. Figure 1 shows that the output of the ith system
I element is also an input and for a feedback loop, we prefer to write

the performance equation in the implicit form, j

}: ~f (xil xi2 l...s$ X r , Yi10 Yi2' 9 'Y0 0 0 Y p ,,, . (111-2] 1 ).•:

1 .2 r~ 1 2

The only ahange in the performance equation of che ith system element
for a non-feedback loop would be the deletion of yi as-an inpuz variable
in equation (III-1].

Inputs from x Outp,4 of ýheI ii!.1 I I't l

outside FCS 1i -2: h item

----i------ ime~i Of i CS

Inputs which 1 -t

are outputs i2

of system Yi i

elements of FCS

FIGURE 1
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In practice, each input to the ±th system element may possess
an error and we denote the error by _ (j a 1, 2,..., r,) and

(k - 1, 2,...,p 1 ), Since the system element is not an Ideal

element, the output of this imperfect element is the correct output yi t

plus the system element error mi. Each of these errors may also be

considered as functions of time; see Figure 2.

x2 + C - -
i x2

x2 + Lx i

7 + C -.

ri ir g

y + C -i mI is output error

1 of o t£ system
•t +element due to

Y2 system element.

* yi+

YP +Yipt

FIGURE 2

1.
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SiaceL performance operators are smooth functions, then each
g9 ( - 1, 2,..., q) possesses continuous first partial derivatives

with respect to the external and internal inputs. This implies that
every fi possesses this property. Hence, the change in f,, produced
by increment changes c , , and

-Af fi( f" i(P)7:

- r -riII-3].

rf Pi

E -+
"J-1 . ii ki k i i

where Pi * (xl"". xi Yi' "" .. yI ) and

(x + Cx , .. i + , i + y

ii "'Yi + C + mi';'Y + e )
Y1 Yi Pi Y1

pii

The points Pi and Qi are in the domain of. f,, thus Afi 0 and

equation [111-3] becor,.s

Pi r 1[1111-4]

af~ f
77 '3- X 3i

k-l J-1kj

"This is the error equation for the ith system elementadescribable by
other than a differential equation. Thetefore, the set of error
equations for a FCS with s external inputs and q system elements
describably by other than diffnrential euqations is the jinear system
of equations A C = B. This matrix equation we prefer to write:

Sy
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I?
t

a, P k ax1  P; ay, p1k-il k j l j

pq q
af af Bfq.qr

q- q m.
ay Pr q ax Pj ay qq k kqqj q q

k-1 J-1k-i i-
The above technique may be employed to generate: I,

I 1k 1* k
[k-

j

S~afq afq'

•- - •Yk } --- (III-6J
k-i LYk P"Yk Pq 8Y 1

1 + 1 ii

1 1
* ~i-

{qq f

k iq. qq q q

q
r q+ q e*x +

i-i qj Pq Q j Pq i

which is the set of error equations for a FCS with a external inputs
and q system elements describable by differential equations.
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Using [111-51 or [111-61 and A vivn eat-. . . ......-. - ....
one can determine the system output error vector

t

providing the given set of system equations can be solved. Observe
that the coefficients in both systems of equations are functions of the
arb•tiary but fixed points Pi. Thus, [111-5] is easily solved for C,

but [111-61 is not easily solved for £y when one or more infinite series

expansions occur. It is not the purpose of this paper to discuss conditions
for a solution to [111-6] because the external input errors for a control

2
system are given as variances a and not as e£ (i , 2,...,q).

xi i .

Hence, the main problem is to e;:,ress the variance in the output errors
as functions of the variances in the system input errors. For a FCS

this means: express the variance in elevation error a and the variance

in train error a as functions of the variances in system input
CT

errors. This we now discuss.

2 2IV. STATISTICAL MEASURE OF OUTPUTS. To express a and a as
S•CT

functions of the variances in the system input errors require that we
prove several remarkable theorems. One may omit the proofs if he so
desires, because the theorems are proved only for the sake of completeness.

Let L' (u) be the Banach space of summable functions defined on

X - {t: -w t e + -} with p as Lebesque measure and ixli- Ix dx.

The following theorem exhibits a relationship between the derivative of
the variance in the variable x with respect to frequency and its power
spectral density.

Theorem 1. Let x EL' (ý). Then

d 2 d ' 2
d? E 'x2 () T wxx (() - d-- {(x (W))} [IV-1

where

a) Ux (2 ) is the variance of x,

b) 4x (w) is the power spectral density of x,

c) x w) is the mean of x.
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Proof: For arbitrary x e L', the autocorrelation function of x

*x(T) - liM 1• Tx(t) x(t + T)dt, T <

T-00 T -

exists, and for 7 - 0 the autocorrelation function reduces to

1I I

'xx(0) " T• 2" -T x2 (t)dt x K 2 ,

2
the expected value of x Since

1 T ej t

-xx lm fT Dxx(() • dw ,- T <
2 r + -T

then for • O

1.1

Thus, we may conclude that

2- --- (). [IV-21

27r

Observe that x4 is constant. However, equation [IV-2] permits us to

define x W as follows:

x2 () ( 1-j( ) d, -0 < W <

This implieb that

d 2
- ( W) - xx (W)
dw 2w X

for all real w. Using the well-known statistical equation

2 2 -
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we obtain

d 2d d -
-r.{a ( }--{x 2(2W)} -r 2Xw

1d 2

where

x Mw x(t)dt:, - W < +

In the above theorem, x may be thought of as an input to a
system element having response r. The output y for this system
element, in its most general form, is given by the convolution integral

i y(t) Ica x(x)r(t - z) dz, e~ t -e +

Theorem 2 gives, the relationship between the power spectral density
of x and the power spectral density of y.

Theorem 2. If r and x belong to L'(iu), then the power spectral
density of y is given by

(D (W) - I R(w)' 02 U~G (Iv-31
yy x

where R(w) is the transfer function of the system element.*

Proof. Since the output y is defined by a convolution function
whose determining functions r and x belong to L'(p), then y c L' (pi)
and the autocorrelation function of y

*It was brought to my attention by a member of the audience that
this property was known to Norbert Weiner. However, it should be
mentioned that in August of 1958, the team of Tappert, Pfeilsticker,
and Slook, having no knowledge of Weiner's result, proved this property
in two entirely different ways.
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*y (T) - ll 1 ~ Tyy T' 2T - y(t) y(t + T) dt

exists. Replacing y(t) and y(t + T) by their respective convolution
integrals we obtain

- {T 1 f L x(u) r(t - u)du) { :x(v)r(t +T - v)dv} dt

Let- v- t - u and - p- t + -v, then the above equation becomes

()1 fT { J.:X + v) r(-v)dv} { [:x(t + T + p)r(-p) dp} dt
Cy (T) - l im 1J a ,

T-- 2T -T

i - : Cr(-v r<o>• • I f T
rr(-V) r(-P) 2 -T x(t + v) x(t + T +p)dt)} dvdp

T-wm ýT- -T
[IV-4]

ST(-v) r 2 -T+v x(u) X(U + T +p -v) du }dvdp

- :r(-v) r(-0) *x (T + 0 v) dvdp

The change in the order of integration is possible because the conditions
of the Pubini theorem are satisfied.

The Fourier integral of y (w) defines the power spectral density
yy

of y, that is

L- 0 (.0 0~W dTCyy(• " . yy {' -•€d

In this integral, replace 4yy (T) by the last relation described in

equation [IV-4]. Thus yy( ) becomes

, -" c: i: r(-v) r(-p) OX(T + P - v) dv dp I s'3 dT
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IF
- ..o , " -";• •x + p-v) dv dpI d

The change in order of integration given above is possible as the
conditions of the Fubini theorem hold.

The Fourier t-ar, sform of the response r,

R(w) * f r(v) e'Jwv dv

is called the transfer function of the system element. Substituting
for the integral forms in equation [IV-4] their equivalent functions
R(w) and R(w), one obtains the desired functional relationship.

S(w)u R(w) R(w) Iý Cu)
yy

As a consequence of theorems 1 and 2, we obtain a useful relationship
between the variance of the input and the variance of the output of a
system element. This result we embody in the following theorem.

Theorem 3. Let x be the input to a system element having response r and

output y. If r and x belong to L' (ý) and x(w) * y(w), then

a2. 2Rt ,l d 2u)}

Oy d"d dw

Proof: Combining the relationships of theorems (1) and (2), we
obtain {)2 w)(2Td: d()I)

dw w6
27r }y + d- -R(w)1 2-n + d--w

which reduces to

d {Or W• )) Z " 2 d { a ( W)}
dw dw
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l6nce

2 d{ 2()2 d(o x2(W
YK,, 2 dwu 12R~~ rd dw.

Theorem 3 established for a system element consisting of a single input
and a single output the functional relationship between the variances
of these variables. Applying this technique to the system element
illustrated in Figure 2 which hasri + Pi + 1 sources of error c,,

(j 1, 2, .. , ri), y (k = 1, 2, ... , pi) and mi, we obtain
Yik

r £ P t

d{a C2(W) +a m2(W)} ()2 d{O 2Cw)} d {a 2(U Yi "t Ri(•l dwo X +dw)}i

Jul kul

which reduces to

2 2 2
d{ai 2(W) 2 P d{ 2(W)} 124 d{, & (w)} d{. (a)}

yiIR (wHl 'r 1k -R 7 j

k-l J-1

Therefore, the set of variance error equations for a FCS with a external

inputs and q system elements may be written:

P1  d {a( 2(W r 11 d{ 2 (W) } d{a 2(w)}

~~~R 1,~ it~~ 2  C d a1
kal M-l

I[Iv-6]

(w) d (a2rq (a 2W2s () pq d { 2) , IR.()W 2  rq a 2(w)

q y 6q -W q

k-l J-1
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2
d {a 2 (W)}

Svlvt LI byse~M oi iinear equations in d (i l, 2p
k

for the outputs desired. In the case of a FCS one would solve for

d fa M1 d {0 M
E and --- Tf . Thus, the variance in elevation anddw d

the variance in train may be calculated by using equations A

d {a 2

2~ 7 EE dwEE

d(a 2 MI

T

Observe that the above technique provides a means for determining
variances of the output errors of a control system describable by
differential equations. These variances, as demonstrated in the fire
control example, may be used to determine a measure of effectiveness
for the control system.
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ANALYSIS OF MULTI-oIMENSIONAL CONTINGENCY TABLES

H. H. Ku and R. Varner
National Bureau of Standards

Washington, D. C.

and

S. Kullback*
The George Washington University

Washington, D. C.

eABSTRACT. This is an expository paper on the analysis of
contingency tables given at the Fourteenth Conference on the Design of
Experiments. The principle of minimum discrimination information estima-
tion is described and used to generate estimates for tests of hypotheses
concerning second-order and higher-order interactions. All classical
hypotheses for contingency tables can be generated by the use of this
principle when certain marginals are considered as fixed.oI

Examples are given and two available computation programs aredescribed in detail.

I. INTRODUCTION. In the January issue of the Journal of Royal
Statistical Society, there is a paper by N. G. Kendall (1968) entitled,
"On the Future of Statistics - A Second Look." A particular paragraph
in his paper concerns the topic under discussion today. We quote:

19. It is rather a hazardous task to try to forecast
the future lines of development of theoretical statistics,
but there seem to me to be two major growing points and I
should like to consider them in some detail. The first
concerns the bridging of the gap between theory and prac-
tical requirements in multivariate analysis. The problems
which are encountered in nearly all statistical enquiries
concerned with this subject are very far from being solved.
I will cite a few examples from what might be a very long
list:

(1) Multiple contingency tables. The problems of manifold
classification in p dimensions are of three kinds;
the pure problem of display so that one can look at
the results as a whole; the problem of empty cells,
or small frequencies, which are apt to arise on the
edges of a table even for large samples; and, perhaps
the most difficult of all, a method of analysis which
will bring out the varlots inter-relationships among
the classificatory variables.

*Supported in part by the Air Force Orfice of Scientific Research,
Office of Aerospace Research, United States Air Force, under grant
AFOSR-68-1513.
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we agree with Kendall on both counts: that the problem needs further
investigation and the problem is a difficult one. The procedure we
present today propo3es a unified treatment of multi-dimensional couLingency
tables, and we believe it to be a step in the right direction.

A. Formulation of the Hypothesis. The formulation of a meaningful
nypothesis of no interaction in a multi-way table is not as simple as one
might expect at first. For the simplest case beyond a two-way table, a
2 x 2 x 2 table, with modified conventional notations as shown in Figure 1.1,
Bartlett (1935) defined "no second-order interaction" as Implying

p (iii)p(221) p(112"2•(222)
(1.1) -

p(121)p(211) p(122)p(212)

Bartlett's Definition

No Socond-Order Interaction for a 2 x 2 x 2 Table

IiD1 D2
D2

C C. C C

1R p(1l) 4p121) p(1.) Ri2) p(C22)

2 p(211) p(221) p(2.1) p(212) p(222) p(2.2)

p(.ll) p(.21) P(..') p(.12 ) p(.2) p(..2)

p(lll)p(221) p(l12)p(222)

H_____......p(121)p(211) p( 1 2 2 )p( 2 1 2 )

Figure 1.1

This definition is essentially an extension of the cross-produect ratio
definition of independence in a 2 x 2 table. The hypothesis proposed
is the equality of association between classifications R and C within
D1 and D2 . How would one go about to extend this formulation to higher

dimension tables with more th-a two categories within each classification?
How many relations of the fcrm (1.1) does one need to express Lhe hypothesis
of no second-order interaction in such cases? These questions were studied

by Roy and Kastenbaum (1955).
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z. Lomputation of Expectec' Frequencies. Once a null hypothesis
is decided upon, the next step is to estimate the expected cell frequencies
under the null hypoths1s using the marginal frequencleb, in, Lhe same way
as we estimate cell frequencieR under the independence hypothesis in an
r x c table, using

x(i.) x(.J)
pGij) P(i.)p(.J) n '

where x(i.) - X•(ij), x(.J) = •.x(ij), Zljx(iJ) - n, and x(ij) is the

observed frequency in the ij-th cell. For expression (1.1), Bartlett
proposed to solve for A in the expression

[x(lll) - A] [%(221) + A] [x(112) - A] [x(222) - AJ
(1.2) -

[x(121) - A] [x(211) - A] [x(122) + A] [x(212) + A]

which is a third degree equation in A. Note that this implies that the Al

two-way marginals are unchanged. Then a statistic X2 - A2 [ijkt/x(ijk)],
2asymptotically distributed as X under the null hypothesis, can be computed

for a test with one degree of freedom. For a three-way r x c x d table,
one has to solve (r-l) (c-1) (d-l) third-degree simultaneous equations
in as many unknowns. The computation involved is not a trivial one.

C. Interpretation of Results. Once we have formulated the
hypothesis and performed the computations, we need to interpret thi2
results in terms of the actual physical variables. What does no second-
order interaction in a four-way table mean? How about no third-order
interaction? In some cases the interpretation may be quite natural, in
other cases the interpretation would be rather stretched. A general
interpretation that may apply to a majority, if not all, of the cases
would be extremely desirable.

II. SUMMARY OF A PROPOSED PROCEDURE FOR THE ANALYSIS OF MULTI-
DIMPNSIONAL CONTINGENCY TABLES. We now discuss a procedure for the
analysis of multi-dimensional contingency tables which we believe has
general applicability. We shall sketch the principle and structure of
the proposed analysis and then illustrate the procedure with a four-way
table. For details see Ku and Kuilback (1968) and Ireland and Kullbar:k
(1968). The one by Ireland and Kullback contains the proofs of the main
results and applies the procedure to a problem of data adjustment. The
one by Ku and Kullback applies the procedure to the testing of hypotheses,
in particular the formulation, estimation and testing of second-order and
higher-order interactions. We shall discuss the procedure for a three-way
table, LSing a modified form of conventional notation.
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F.. .. ... b •d,-,t- . . uC nLuLeLeLs, we may visualize
three associated tables as follows:

(1) The r-table ir(ijk)}. The 7r-table may be specified by the
null-hypothesis, given by observAtions, or estimated. For example, the
w.-table may specify equal probability in all the cells, three-way independence,
etc.

(2) The class of p-tables denoted by {p(ijk)}. A p-table is a
contingency table that satisfies certain conditions of interest, usually
a specification of the marginals, for instance, the one-way marginal.
p(i..), p(.j.) and p(..k).

(3) The p*-table {p*(ijk)}. The p*-table is that member of the
class of p-tables which most closely "resembles" the ir-table in the sense
of minimum discrimination information; i.e., the p*-table minimizes the
discrimination information:

(2.1) I(p:r) - p .tn
71

over'thp class of p-tables.

Wi:. these three tables fixed in mind, we shall summarize the
main resul "'-en in the two references.

A. If we set ir,(ijk) ;-d , the uniform r x c x d table, then the

classical hypotheses of independence, homogeneity, conditional independence,
no second-order interaction, etc. are represented by p*-tables when certain
marginals are considered as fixed, and can be considered as "generalized"
independence hypotheses. Thus, when p(i..), p(.J.), p(..k) are fixed, the
p*-table has the form (for any r-table)

(2.2) p*(ijk) - a(i)b(j)c(k)iT(ijk)

where a(i), b(j), c(k) are determined to satisfy the marginal restraints.

It turns out that for w(iJk) v ,

(2.3) p*-table: p* (ijk) - p(i..)p(.J.)p(..k)

When two of the Lwo-way marginals, say p(ij.) and p(i.k) are specified
then the p*-table takes the form

p*(ijk) - a(ij)b(ik)7r(ijk)

(2.4) p(ij.)p(i.k) 1

"* for n - -

p (i..) rcd
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When all three rwn-,,.y .. g11-.• . i... t&Ultidered fixed, the p*-table
has the form

(2.5) p* - table: p*(ijk) - a(ij)b(jk)c(ik)Tr(ijk)

2and the ps-table satisfies Bartlett's definition on no second-order

interaction for 1 = I/rcd, since

Sp* (iii)p*(221) a(ll)b(ll)c(ll)Tr a(22)b(21)c(2l1)•T

-ip* (121) p* (21i) a(12)b(21)c(ll)7r a(21.)b(ll)c(21)7r

Sa(ll)a(22) p*(ll2)pj(222)

•,!a(12)a(21) p* (22 *212)

i1;

2

A straight forward convergent iterative procedure is given later to
determine p*(ijk).

A pictorial representation may be visualized as shown in Figure
2.1. Let the ordinate represent some measure of association or dependence.
Then the uniform table r would be at the zero datum.,: Now let the p-tables
be represented by the series of regions above r. If there is no restric-
tion on p, p will include r and p* is r. With one-way marginal restraints,
the class p becomes smaller and shrinks away from v. Then the p* table
is the one closest to r yet satisfies these one-way marginal resiraints.
With all two-way marginals fixed (and hence also the one-way marginals),
the region shrinks further and p* is the table closest to Tr, and Is also
the table closest to p*. The oblerved sample table is represented by a
point p in the picture. The closeness of the resemblance from one table
to another table is measured by the discrimination information, and the
following relationships hold.

effects of marginals measure of interaction

I - (p: ) + IC :p )

(2.6) 2 2

1 (p*:n - I(p*:rr I(p*: p)

I(p:p*) =I(p*:p*) + I(ý:p*)
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II

i: Fted one,-w-y

7(,'.r)

Figure 2. 1

Schematic Diagram of Components of Information
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-aeneral. If n* nrPn . .a r^....

corresponds to a set Hb of given marginats where Hb:O H., then

"I(p;p*) I(p*:p*) + (':ppb).

B. The values of the p*-table can be computed by an iterative scheme
which adjusts the r(ijk) to satisfy successively the given marginal
restraints. For a three-way table when all two-way marginals are given,
we cycle through

p(O(ijk) = r(ijk) rcd

•:(3n+l) (lk) - On (ijk) •
p (iJ .)

(2.7)

(3+)p(l .k) (3n+l)
S(3n+2)p (i.k)

P(3n+3) P 'J) (3n+2) i;

p(ijjk) (p (ijk), n 0 0, 1,
(3n+2) (.

It can be shown that the iteration converges to p* and p* is unique.
For (2.4) the iteration is completed at the end of the first cycle.

C. The p*-table provides RBAN (Regular Best Asymptotically Normal)
estimates under the given constraints, and

x(ijk)

2nI(p:p*) - 21(x:x*) - 21 x(ijk)Zn
x* (iuk)

is asymptotically distributed as X under the corresponding null
hypothesis, including the no second-order interaction hypothesis.
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n
n, = rcd, x - np, and x* - np*. Usually 5 to 7 cycles are sufficient

to obtain agreement between marginals to within .01 or .001, when more
than one cycle is required.

Now let us consider these results with respect to the three
problems raised at the beginning of this paper; i.e., the problems in
the formulation of the hypothesis, the computation of expected cell
frequencies, and the interpretation of results.

First, we have defined a measure of "closeness" between two discrete
distributions by the discrimination information given in (2.1). A
hypothesis of interest is usually concerned with independence or asso-
ciation between various classifications. By necessity, the expected
cell frequencies under such hypotheses will have to be estimated from
observed marginal frequencies. Hence, all these hypotheses are members
of the "generalized" independence, or no interaction hypothesis, rep-
resented by the table which is closest to the uniform n-table, subject
to various marginal restraints. These tables are the p*-tables in our
procedure.

Second, we have an iterative scheme for the computation of p* or
np*. There are two computer programs available which we shall discuss
later.

We shall dwell on the third problem, the interpretation, at some
length, since this is the aspect in which we are most interested. We
shall give first a general interpretation and then details.

We may consider the complete sample table to contain all the
"information" available from the particular experiment. In the process
of analysis, we aim to express the sample table in a reduced number of
parameters represented by some or all of the marginal totals. In other
words, we are interested in knowing how much of this total information
is contained in a summary consisting of sets of marginal tables.

If there is no first-order interaction, i.e., there is independence
of all classifications, then all the information is contained in the
first-order marginals in the sense that given these marginals, the
complete table can be constructed to within sampling error. If the
first-order interaction is significant, but there is no second-order
interaction, then the set of two-way marginals will be required to
summarize the data adequately. The use of two-way tables to summarize
multi-way classification data is a rather common practice, and the
implied assumption is therefore "no second- and higher-order interactions."

148



A direct consequence of this interpretation is that the analysis
=,l. IC LU LWiL of tCue set o0 marginal tables if there is no

intevraction ot thu same order.

We remark that the set of marginal tables must be considered
jointly for proper interpretation, and if one or more of these tables
show signiticant inLeractions, the results of tests of the remaining
tables could lead to erroneous conclusions. An example of such a case
was given in Simpson (1951).

The above interpretation is not restricted to complete sets of
marginals. If the p*-table computed from three out of the six two-way
marginals in a four-way table is found to be "close enough" to the
p-table by our test, the three two-way marginal tables could be con-
sidered as containing essentially all the information in the four-way
table. The analysis can therefore be performed on these marginal
tables and the complexity of the problem reduced. For example, the
analysis for a four-way table may be reduced to that of one two-way
and two three-way tables, or to that of three two-way tables and one
three-way table, provided that the corresponding interactions are
found to be not significant.

SOn the other hand, we may also wish to estimate the effects, or
contributions, of the specified marginal tables. An analysis of informa-
tion table can be constructed using the relationships given in (2.6)
wherein all the components of information are additive as well as the
associated degrees of freedom. The interpretation of such a table is
very similar to that of an analysis of variance table.

We remember that

p* (ijk) - a(i)b(J)c(k)Ti(iJk), or

(2.9)
in p • n a(i) + kn b(J) + on c(k) + in Tr(iJk)

which compares with

(2.10) E(y) + ri + cj + 6k

the usual model for analysis of variance. Thus each model can be
expressed as the sum of a grand mean, a row effect, a column effect,
and a depth effect. Instead of a linear additive model, we have a
logarithmic linear additive model. This fact is interesting in the
sense that we did not assume such a model to start with as others have,
but ended up with this model by minimizing the discrimination information.
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..- P- yUL Lu mulLivariate regression
analysis. We are in fact fitting the observed frequencies using the
marginals as variables. The "a' ," "b's," and ticls" are the fitted
coefficients. If the effects of the two-way marginals are small,
then pj A pf, and the values of a(ij), b(jk), c(ik) are close to unity.

The additional effect of the two-way marginals given the one-way
marginals is represented by

x (ijk)

1 ijk xi(iJk)
x* (ijk)

(2.11)

- 2n.(i:p*) - 2nI(p:p*)

or the difference between the information statistics measuring thefirst-order interaction and the second-order interaction. Since

1.1

in 2 in a(i) W + 9n b(ik) + on c(Jk),

we could write also

(2.12) 2nI(p*:p*) - 21 ijx(ii.) In a(uj) + 21 ikx(i.k) in b(ik)

+ 21 jkx(.Jk) in c(jk),

where a(ij), b(ik) and c(jk) can be computed as products of ratios of
marginals in the iteration process using p* as the starting table
p (O) (ijk).

While (2.12) is algebraically correct, and the value of
2nl(pl:p1) is unique, the three components appearing on the right
side of the equation are not necessarily independent, and the computed
values of these terms depend on the order of the two-way marginals
within the cycle of iteration. The properties of these components
need further investigation.

Hence, if a breakdown of the two-way marginal effect is desired,
a conditional approach is necessary; i.e., the two-way marginal re-
straints are considered in successive sets, where each set implies the
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preceding one, and the effect of a .art-ii. .°1i-•'-l ±•
computed conditioned on the preceding set of two-way marginals that
had been fixed. An example is given for a 2 x 2 x 2 x 2 table in
Appendix A, together wiLh cumputer print-out and details of computation.
This procedure is discussed in further detail in Ku and Kullback (1968),
and the results of computing these effects by different approaches are
compared for two four-way tables.

The main advantage in using an analysis of information table such
as that given in Appendix A is that the table presents an additive
analysis of the complete contingency table, rather than just a special
segment of the analysis, say the hypothesis of no second-order inter-
action. Therefore it aids in seeing the picture as a whole and in
understanding its underlying structure.

We list also, in Table 2.1, a number of results from examples
appearing in current literature.

III. THE COMPUTER PROGRAMS. There are two computer programs
available for the analysis of contingency tables by the procedure
described above. These programs, designated KKV68A and KKV68B,
respectively, are written in double precision FORTRAN V language and
are now on FASTRAND at the National Bureau of Standards for use with
its 1108 computer.*

The two programs are basically similar and can be used for the
analysis of up to four-way tables. Whereas program A allows more
categories for each classification than B, program B allows some
options that are not available in A. We shall describe these programs
in detail and note the computation and options that are available.

*Because of difference in compiler and peculiarities of behavior
of different models of computers, certain minor changes may have to be
made before these programs will work on other computers. We would be
happy to furnish, to persons interested in using these programs, card
images on a blank tape to be sent to the first two authors at:

Statistical Engineering Laboratory
National Bureau of Standards
Washington, D. C. 20234
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Data from Berkson (19681

Three-Way Tables

Comparison of 21(x:x*), x and Minimum logit Y, Values

21 X

Min. Disc. MLE and Min.
Ecample from Inf. Disc. Inf. Min. Logit D.F.

Cochran, 2x2x3 .854 .851 .849 2

Woolf, 2x~c3 2.9655 2.9839 2.9811 2

Norton, 2x12x2 7.71 7.59 7.37 11

fBartlott, 2x2x2 2.2945 2.27o4 2.2641 1

Ka'stenbaum
and Lamphiear, 2x3x5 3.160 3.158 3.128 8

Data from Ku and Kullback [1968], Bhapkar and Koch (1968)

Four-Way Tables

Second-Order Third-Order
Example from Intermction D.F. Interaction D.F.

Hoyt, Krishniah, and 172.257 108 44.793 36
Torrance, 7x4x3x2

Ries and Smith, 9.847 9 .739 2
2x2x2x3

Kihlberg, Narragon
and Campbell, 7.33 5 .67

2x2x2x2

Table 2.1
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I
(1) Dimension limitations.

FOR R C D

KKV68A r < 9 c 19 da 9 t 4

KKV68B r < 7 c < 9 d 4 t < 3

.(A) Reguirements for computer memory locations.

FOR Code Data Total

KKV68A 7323 141495 48818

KKV68B 9587 11670 21257

(2) Input data and options.

A. Title cards are provided for each of the classifications.

B, Tables of sampled data: X(IJKL) - Np(ijkk). These data are
punched on cards in 7D 10.0 format, and read in by columns within each
row, row x column within each depth, and row x column x depth within each
level.

C. In program A, Nv(IJKL) = F(IJKL) in always taken to be equal to
n/rcdt and iterations begin with these numbers for each of the three
iterations to compute Np*(ijkZ), NpJ(ijkZ) and Npl(ijk).

In program B, there are two options: (i) The first option uses
F(IJKL) a n/rcdt same as in program A. The computation sequence in
program B, however, differ. from that of A in that the iteration begins
with F(IJKL) to compute the cell frequencies for the no first-order
interaction NPM , then uses NPý as input to compute the cell frequencies
for no second-order interactio5 NP*, and uses NP? to compute cell
frequencies under the no third-ordir interaction NPI. This computation
sequence allows the calculation of the effects of th• sets of marginals
such as 2NI(p:Tr), 2NI(pk:p ) and 2NI(pl:p*), and their components.
(1i) The secind option illmws the input oi a table of r(IJKL), after
and in the same manner as X(IJKL). This choice is useful in adjusting
data to fit specified marginals - a topic not discussed in this paper.
The fixed marginal. will be those of X(IJKL), The table F(IJKL) is the
observed table to be adjusted to fit the marginal. of X(IJKL). An
example is given in Ireland and Kullback (1968),
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D. For program A only, option is provided for the choice of sets of
m-rginals if these marginals are not a complete sat of one-, two-, or
three-way marginals. Itetative computations for the complete sets of
marginals are always automatically performed.

E. Options are provided to specify the maximum number of cycles of
iteration for the computation of each iteration, and also for the
specification of the tolerance denired between the original marginalJ
and the computed marginals. Experience has shown that 20 cycles and
agreement to 0.01 are usually sufficient for most problems.

(3) Outputs and options.

The following notations are used in the output:

X(IJKL) Observed cell frequencies

'L(IJKL) Cell frequencies NP*

Z(IJKL) Cell frequencies NP*

W(IJKL) Cell frequencies NP*
3

U(IJKL) Cell frequencies corresponding
to specified marginals

R(I), C(J), etc. These are equivalent to a(i),
b(J), etc. used in the text

RC(IJ), RD(IK), etc. These are equivalent to a(ij),
b(ik), etc. used in the text

RCD(IJK), RCT(IJL), etc. These are equivalent to a(ljk),
b(lJz), etc used in the text

A. In program A, there is no option, the print-out is arranged in the
following order:

(i) Titles of classification.

(ii) Original tables of X(IJKL) in the form of two-way tables,

(iii) All marginal three-way, two-way, and one-way tables and
the grand total. These tables are useful for inspection
if there are do higher-order interactions.

(iv) All 16 sums of quantities of the form 2jX(IJKL)LNX(IJKL)
computed in double precision. These sums are useful in
testing certain hypotheses as illustrated in Kullback,
Kupperman and Ku (1962).
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(v) iNumber or complete cycles of iterations performed for
each interaction computed, and the tolerance specified
for the marginnl agreement.

(vi) Tables Y(IJKL)

2JY(IJKL)LNY(IJ!KL)

First-order interaction 2Nl(p:p*)

Chi-squared - Y

Tables of residuals - X-Y

X-Y
Tables of normalized residuals

(vii) Print-outs under (vi) are repeated corresponding for Z
and W, and U when specified.

B. Options available in print-out of program B. Print-outs described in
Paragraph A(i)-(vii) above for program A remain the same, except for the
following options:

(1) If tables of coefficients R(I), ... , RC(IJ), ... , RCD(IJK),
and quantities such as 2SUMX(I...)LNR(I...)...., are computed,

then these numbers will b6 printed out. Both tables of residuals and
normalized residuals will be suppressed in this case.

(2) Options are provided to print either the residuals or the
normalized residuals, or both if the coefficients are not computed and
printed.

A sample computer print-out is given in Appendix A, and the
setup for data cards is given in Appendix B.
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APPENDTX A

Dari used in this example arw Laken from the Kihlberg, Narragon,
and Campbell study of the relationship between car size and accident
injuries as quoted by Bhapkar and Koch (1968).

There are four classifications as follows:

R: Driver ejection - not ejected or ejected

C: Accident severity - nut severe or severe

D: Accident type - collision or rollover

T: Car weight - small or standard

The data are shown in the 2 x 2 x 2 x 2 table at the beginning of
the priat-out.

Before we discuss our procedure of analysis on this set of data,
we wish to make two remarks:

First, Bhapkar and Koch condensed the original data into a
2 x 2 x 2 x 2 table presumably for convenience. The original data has 4
categories in accident type, 3 in severity and 3 in car weight, and is
a 2 x 3 x 4 x 3 table for drivers who were alone at the time of accidents.
Hence, all conclusions and interpretations given below are strictly for
illustrative purposes, and are based on data as condensed by Bhapkar and
Koch.

Second, in many problems of data analysis, there is usually
additional knowledge available which should be taken into account. In
this example for instance, there is a time element linking the four
classifications in the sequence: car weight - accident type - accident
severity -+ ejection. The dependence of one classification on another can
only go from right to left and not in the reverse order. In addition,
there is the distinction of a "cause and effect" relationship between
two classifications (by logic or by law-like long past experieice) or a
mere "association" relationship. Severe accidents are likely to cause
ejections of driver, is an example of the former; ejection of driver and
car weight is an example of the latter. We hope to use these additional
bits of knowledge to make our analysis more meaningful.

Analysis of information Table A.1 represents a preliminary scan of
these data using our procedure. Neither the third-order nor the second-
order interaction reached significance. The value for the no third-order
interaction hypothesis of .67 checks with Bhapkar and Koch's results.
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marginal tables jointly contain essentially all the statistical infor-
mation available in the four-way table, or, given the six two-way
marginal tables, we could approximate the four-way table to within
sampling error. Thus, the analysis is reduced to a breakdown of the
six two-way marginal effects into individual degrees of freedom. We
shall do this in two ways for illustration.

If we compute the independence component for each 2 x 2 table, we
get the values shown in the second column in Table A.2. These computa-
tions can be performed easily using the SUM 2X(xxxx)LN X(xxxx) values
given in the print-out. For example, the R x C independence component
is :

NX(IJ..)
2i - X(IJ X(I ... )X(.J..)

and is the difference of two sums.

2X(IJ..)LN X(IJ..) - 71559.893

2N LN N - 81960.898

153520.791

2X(I...)LN X(I...) - 77938.434

2X(.J.,)LN X(.J..).- 75296.372

153234.806

21 153520.791 153234.806 - 285.99

We note that the sum of these six components, 1351.62, is much larger
than the two-way marginal effects-value of 1185.78.

This result shows up the danger of looking at the marginal tables
one at a time, even if there is no second-order interaction. Since the
six two-way marginal tables are interrelated, interaction in one two-way
table could conceivably affect the magnitude of interactiou in a
neighboring two-way table, and thus mast.s the actual relationship
between these classifications.

Next we use the step-wise approach; i.e., the cumulative addition
of one two-way marginal at a time, and compute the discriminarion
information value of the effect of the m-th two-way marginal over the
marginals that had been fixed up to that time. The values so cc.mputed
for the selected sequence of marginals given in column 1 are shown in
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column 3 of Table A.2. The total effect checks with the value of
2nI(pý:pf) as it should.

With six two-way marginals, we have a large number (6!) of ways to
order these MAryIlls in the sequence. Corresponding to each sequence
we could compute a set of information value effects. Obviously many of
these sequences are without meaningful interpretation.

Here we shall appeal to the additional knowledge inherent in this
set of data; i.e., we shall order the marginals to be fixed in the same
order as the sequence in time, and order the "cause and effect" rela-
tionship ahead of "association" relationship as follows:

Marginal tables Association of Marainals fixed

DT accident type - car weight (..KL),(I...),(.J..)

CD accident severity - accident type (..KL),(.JK.),(I...)

RC ejection - accident severity (..KL),(.JK.),(1J..)

RD ejection - accident type (..KL),(.JK.),(IJ..),(I.K.)

CT accident severity - car weight (..KL),(.JK.),(IJ..),

RT ejection - car weight all two-way marginals

In choosing this particular sequence of ordering, we realize that
the logic for the selection may not be entirely free from criticism.
Nonetheless, this ordering appears to be reasonable for the particular
problem. In comparing columns 2 and 3 in Table A.2, we note that the
same conclusions will be reached for the first four effects, but exactly
opposite conclusions are evidenced by the values of the last two effects.

We give in Analysis of Information Table A.3 a detailed analysis of
the no first-order interaction component 2nI(p:p*) - 21(x:x*), using
x*, ... , x* to denote expected cell frequencies with 1,.2, ... , 5 two-
aeway marginias fixed, and x* to denote that of no second-order interaction.We note that

3x*(ijkZ) - x(i... )x(.J..)x(..k.)x(...Z)/n

and, by (2.7),

x(..kk) 2x* - x*(iJkO) - x(..kR.)x(i...)x(.j,.)/n,
a x*(..k) (
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nx(. .k)
x(..k.)x(. .. Y)

Similarly, xC(ijkk) and x*(ijk0) can also be expressed explicitly as

functions of the marginals, and the iteration process (2.7) ends at the
first cycle. x*, x*, however, cannot be so expressed and a number of

cycles of iteration are necessary to obtain the desired agreement among
the marginals.

One of the useful features in these programs is that the residuals
and the normalized residuals are printed out for examinatiot,. Colunm 1
of 'fable A.4 shows the normalized residuals after all two-way marginals
have been fixed. All these residuals are small in magnitude. The largest
two are R(2121) - 1.084 and R(2122) - -1.819. The addition of the three-
way marginals x(.Jkk), x(ijk.) and x(i.kP) in that sequence did not change
the residuals by much. The addition of the three-way marginal x(ij.2),
however, improves the overall picture of these residuals. The information
value of 2.928 with 1 d.f. suggests that association between ejection-
accident severity-car weight may merit further investigation.

There are many ways to construct analysis of information tables for
a four-way table - t.he choicc of which depends wainly on the purposes of
the experiment and the hypotheses of interest. In analysis of information
Table A.5 we give an example for the analysis involving the following
hypotheses:

H Given accident type and car weight, ejection is independent of
accident severity, or RxCIDT. The appropriate marginals to be
considered fixed here are x(i.kZ) and x(.Jkt). Let the expected
frequencies under this hypothesis be denoted as x*. It can be

m
x(i.kZ)x(.JkZ)

verified that x*(ijkk) - , and can be computed

directly.

Since k x*(ijkZ) # x(ij..), the effect of the marginal

restraint x(ij..) has not been taken in account in H . Addition
of x(ij..) to x(i.ky-) and x(.JkZ) as restraints yielhs x* as
expected cell frequencies of independence of R and D clansifica-
Lions given the three marginals. The statistic 21(x*:x*) measures
the conditional independence between R and C classifdca~ions as in
H , but with the added restraint x(ij..), i.e., the sum of the
e~pected cell frequencies over the last two ciassilicatlonMs wUl.
satisfy the observed frequencies. Hence, we have



H 2 Given accident type, car weight and the observed ejection-severity
frequencies, ejection is independent of accident severity. The

difference buLween the two components represents

H3 : The association between ejection and accident severity is independent
of accident type and car weight.

We note that x* cannot be computed directly since x(i.kk), x(.Jkk)
and x(ij..) imply ahl six two-way marginals. In analysis of information
Table A.6 we show that 21(x:x*) is in fact a component of three-way
marginal effect.

Analysis of Information Table A.1

Traffic accidents data from Bhapkar and Koch (!968)

Components due to Information Value D.F.

No first-order interaction 2nl(ý:pf) 1193.13. 11

Effect: all two-way marginals 2nI(p :p*) 1185.78 6

No seccnd-ordcr interaction 2nI(P:p*) 7.33 5

Effect: all three-may marginals 2nI(p*:p*) 6.66 4

No third-order interaction 2nI(P:p*) .67 1

Table A.2

Analysis of Effect of All Two-Way Marginals 2nl(pý:pf)

Information value)
marginals fixed

Two-way Independence in cumulatively in tbh
marginal tables each 2 x 2 table sequence given at left D.F.

DT 52.96 52.96 1

CD 601.42 601.42 1

RC 285.99 286.oo 1

RD 401.69 229.33 1

or .76 14.38 1

Fr 8.80 1.69 1

1351.C, 1185.78 6
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IA
First-order Interaction 21(x:x*) - 1193.]1

Two-way maryina1s given Information D.F.

a) DT effect 2I(xa:xl) - 52.96 1

interaction 21(x:x*) = 1140.15 10
a

b) DT,CD effect 2T.(x*:x*) = 601.42 I

interaction 21(x:) = 538.73 9

c) DT,CD,HC effect 21 (x*:) 286.00 1

interaction 2I(x:x*) 252.73 8

d) DT,CD,HC,RD effect 21(x*:x*) 229.33 1

interaction 2I(x:x•) 23.40 7

e) DT,CD,RC,HRD,CT effect 2n(Xe:xd) 14.38 1

interactionl 21(x:x*) 9.02 6
e

f) DT,CDBECQRDCT,,R effect 21(xf.xe) = 1.69 1

Interaction 2I(x:x*) = 7.33 5
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Table A.4

Normalized Residuals

Add
X(.Jk•),

X(ijk)
All two-way ,margInals x(i.k•) All three-way marginals

R(1J13)
-. 482 .825 -. 126 .426 .086 -. 131

.473 -. 576 .487 -. ý70 -. 306 .348

R(1J21)
.35.1 -. 306 -. 551 .426 -. 205 .153

i.o84 -. 387 1.158 -. 481 .386 -. 178

R( 1J12)

.068 -. 11L .055 -. 074 -. 037 .050

.374 -. 252 -. 22? .188 .154 -. 126

R(IJ22)
.293 -. 143 .369 -. 219 .133 -. 080

-1.819 .608 -. 860 .274 -. 331 .099

Components due to Information D.F.

Second-order interaction 21(x:x*) - 7.328 5
2

CDT!, ROD, RDT effect 3.733 3

RCT effect 2.928 1

Third-order interaction .667 1
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Analysis -f Information Table A.5

Components duc to .nformation D.F.

RxCIDT 21(x:x*) - 120.665 14

RxCIDTHC 21(x*:X*) -115.137 1

(RxC)(DT) 2I(x:x*) = 5.528 3

Analysis of Information Table A.6

Second-order interaction 21(X:X*) 7.328 5

_•-(x:x*) _ _5.5_28 3

2I(x*:xn) 4.859 2

Third-order interactlon 21(x:x*) .669 1
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X( IJ2,.1

20,s 51.6

41 345

x( .Jlu)

37o 1 9 3 9
173 11G3

x .JtL)

79 170
192 669

x (1 ~J,.L)

410 2026
262 1426

X(2J.L)

45 133
103 426

X(1. IL)

bOo 2•r00
49 27•

XCI, *2L)

9 Y72 7h
99 •17
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Y TA3L-S

?'4 3o 1 i~q f
176 529

X( ,,(.)

340o 724
321 3B6

X ( I. .L.)

672 3452
14• 559

X(.J<,)

23b5 249
1356 861

455 2159
355 1852

X(.,KL)

5bf9 3172
P.71 b39

O'.-l-'A Y TA3?L!5
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4 1 2+ 707

2614 2k17

3721t 1110

B20 4011

I OT AL.

X...

4B31

PRINT OF sums

SUVI 2X(IJKýL)UXCIJKL): *62855504+257b5693+0U5

5-J~1 2'X<(IJ. L) .NX ( J.L ): G7 7 H4 15 5 95 0'
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~II~.7155%9a3j3579Ijj1+Ooj

.73I.323t~4J 955975+005

SA~ 2 X(J K )LNX(.JK<.)7 "10690035J910170j3 +005

SUMA 2X(..KL)LNJX(.,.(L)= 4724053540001422~9+00
5

SUM1 2X(.J..)LNJX(*js*).- o7 529 637155223355+005

SJ\1 2XC..Ka)L.NJXC..#.)= .767531454J77157
2.4. 0 0 5

SU11.12 X(.S..L)LNJX(...L)= .7756Olj5q53230,)
7 +005

2:4 L.J Ni N1~E93~3iLr7io~
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NO OF TTRT~~, i ryri--r

AGREEAE.Ar 3ETWINa,1 VARANIALS TO * 100-02

'( I e 11 L

291.73'4 21+7.l127

Y (IJ21)

87,026 73.E109
14.919 l2o65~4

Y (I 112

1427.0053 1210.279
24'4,6,39 207 * 435

Y (1J22)

425.655 561.-035
7?2.97a~ 61.894

2Y LN\ Y= -616639D,46007271+00:5

FIsR;TOR;)t:R INTZERA C T I s lP1052 ~777+0O'i

CýQ-SOJATIE* ihn /213124L'U4i
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,i - ITEiATIO, -" "I CYCLES

ADRE'JT 3Et.EAN MIAR(INALS TO .el00-02

Y(ItJPKL)

359,131 140.235

23.695 25.935

Y(IJ21)

57.•4b 115.28I9
14q,825 B3#540

Y( IJ12)

-I75*O4. 1025,594
107*2.32 16'4a235

Y (I J 22)

144.s4d6 406.802
32,345 255.259

TABLE OF RESI LJALS
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R( IJ21)

4sI74 -3.-40

R(IJ12)

2.960 -3.594
3.8 65 -3.235

R( IJ22)

5.bib -2.632

-1U.345 9.711

TABLE OF NORAALIZCO RESIDU4L5

• R(I.J11)

".o482 .825
*.73 -o576

R(IJ21)

9351 -0306
I .o84 -. 387

R(I Jl1-'

•OIMJ -. 112
o374 -. 252

R(IJ22)

.293 -, 43
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2Z LN Z: .6285117708584006+005

SECONJ-ORih;R INTEHACTION= .7327171723+001

CHI-Sr'JARED= ,7014267537+001

NO OF ITERATIO\15= 7 CYCLES

AGREEMENT 3ET4EEN MARGINALS TO .100-02

Y(IPJKL)

Y(IJil)

~834o393 151.607
27,607 21.393

Y(IJ21)

6i,50g) 10,392
17,392 81.60b

Y(IJI2)

1b79.508 1020.392
109,392 162.6013

Y(IJ22)

14b.3,J2 L405..60
23 50U53 263.392
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R( IJl1i

RC 1J21)

38S 17B3

R( 1J12)
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*154 -m126

R( IJ22)

o133 00

-,331, .099

20 LN vl= sb2357t34blIS02709+ofl5

THQ-DýE INTERACTI C)'Jz 4696095368+000

CriI-SW)ARED= *ý)10ý614U
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NO Or ITERATtONSu CYCLES

AGREEMENT BETWEEN MAR(~?NALS To *100-02
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3Y336 146e63

22631 26,366

Y II J2,1I.................... . . ..

-62,331, 109,669 *- -- -. . ---... . . .

1666 82.331
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339,217~~.... .4273......~. ...

30,793 256,217 _

24UI11 LN IUt)w .6285297612235'45'4+OOS
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APPENDIX B

Setup for Data Cards for KKV68A and KKV68B

All data values must be right adjusted in the fields specified.
(1) First card has the value of N punched in columna 1-5.

N = 2 for the two-way table
N - 3 for the three-way table
N - 4 for the four-way table

(2) The next set of data consists of N descriptive title cards. The
information may be punched in columns 1-72.

(3) The next card consists of data in the following columns:

Col. 1-5 M1 - number of categories in the row classification
LCol. 6-10 M42 - number of cat~egories in the column classification

Col. 11-15 M3 - number of categories in the depth classification
Col. 16-20 M4 - number of categories in the level classification
Col. 21-25 NSETS - number of specified sets of marginals <, 5

For program KKV68B, NSETS 9 0.
Col. 26-30 ITMAX - maximum cycles of iterations
-Col. 31-50 CONST - tolerance required between marginals
Col. 51-55 IFCR - 1, compute F(IJKL) - n/rcdt

,. IFCR m 2, input F(IJKL)
Col. 56-60 IRCD = 1, coefficients not calculated

IRCD - 2, coefficients calculated
Col. 61-65 IPRINT - 1, print residuals

MIPRNT -.2, print normalized residuals
IPRINT a 3, print both

If IRCD m 2, IPRINT has no effect.

For program KKV68A, culs- 51-65 are not used.

(4) The next group of data cards consists of the specified marginal. if
NSET 0 0 in program KKV68A.

The first card contains NMARGS in col. 1-5. MWARGS < 6.

The second card contains MARGN in 6A4 format.

MARGN is specified as, e.g., IJ..

(5) The next set of cards is the input X(IJKL) specified using format
7D10.0.

(6) If IFCR - 2 in program KKV68B, the next set of cards are the F(IJKL)
values in 7DlO.O format. The cards for (5) and (6) are punched by
column with each row, row x column within each depth, and row x column
by depth within each level.

Repeat from (1) through (6) for each set of data to be analyzed.
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NEYMAN AWARDED THE 1968 SAMUEL S. WILKS MEMORIAL MEDAL

The Recipient of the Fourth Samuel S. Wilke Award
Announced by Frank E. Grubbs

Professor Jerzy Neyman of the University of Californi4, Berkeley,
has been awarded the Samuel S. Wilke Memorial Medal for 1968. The
announcement of Professor Neyman'e selection for the 1968 Wilke Award
was one of the highlights of the Fourteenth Annual Conference on the
Design of Experiments in Army Research, Development, and Testing,
which was held at the Army Chemical Center, Maryland, 23-25 October
1968. Professor Nsyman has long been recognized as one of the tore-
most statisticians in the entire world, having made many fundamental
contributions to the theory and application of statistical methodology.
The citation for Professor Neyman reads as follows:

"To Professor Jerzy Neyman, whose extensive contributions both to
the theory and practice of statistics have led to fundamental changes
in the thinking and methodology of scientists all over the world, He
has inspired and led more than a generation of students and his continued
leadership is effective today. Both by precept and by example, he is one
of the foremost statisticians in the entire world."

'The Samuel S. Wilke Memorial Medal Award is administered by the
American Statistical Association, a non-profit, educational and

scientific society founded in 1839. The Wilke Award is given each A.

year to a statistician and is based primarily on his contribution to
the advancement of scientific or technical knowledge in Army statistics,
ingenious application of such knowledge, or successful activity in the
fostering of cooperative scientific matters which coincidentally benefit
the Army, the Department of Defense, and the Government.

* The Award consists of a medal, with a profile of Professor Wilke
and the name of the Award on one side, and the seal of the American
Statistical Association and name of the recipient on the reverse; a
citation,. and an honorarium related to the magnitude of the Award funds,
"The Annual Design of Experiments Conferences, at which the Award is
given each year, are sponsored by the Army Mathematics Steering Com-

* mittee on behalf of the Office of the Chief of Research and Development,
Department of the Army.

The funds for the Wilke Memorial Award were donated by Philip G.
Rust, Thomasville, Georgia.

With the approval of President Geoffrey Moore of the American
Statistical Association, the Wilks Award Committee for 1968 consisted
of the following:
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Professor Robert E. Bechhofer Cornell University
Profp~xqnr Wi11iam r Crn~hr-, Hu .... r c ...... I ve;aILy

Dr. Francis G. Dressel Duke University and the
Army Research Office-Durham

Dr. Churchill Eisenhart National Bureau of Standards
Professor Oscar Kempthorne Iowa State University
Dr. A' xander M. Mood University of California
Major General Leslie E. Simon Retired
Dr. Frank E. Grubba, Chairman Aberdeen Research and

Development Center

Professor Jerzy Neyman was born in Bendery, Bessarabia of Polish
parents. He was educated in Russia at the University of Kharkov and
when Poland again became an independent state, he went to Warsaw where
he received the Ph.D. degree from the University of Warsaw. He held
several positions in Polaud: as a Lecturer at: the University of Warsaw
and the University of Cracow and was Head of the Biometric Laboratory of
the Nencki Institute in Warsaw. Dr. Neyman received a Rockefeller
Fellowship which allowed him to study at the University of Paris and
at University College, London. In 1934, he became a member of the staff
at University College, remaining there until 1938 when he went to the
"University of California, Berkeley as Professor of Mathematics. He has
remained at Berkeley for 30 years as the Director of the Statistical
Laboratory and Professor first of Mathematicsi and then, in 1955, when
the Statistics Department was established, as Professor of Statistics.
Professor Neyman has been a Visiting Lecturer at many universities in

the United States and abroad. He is now Professor Emeritus recalled to
active duty and Director of the Statistical Laboratory.

Proessr Nyian has received many awards and honors. including an
honorary degree from the University of Chicago, the University of
California, and the University of Stockholm. He has also received the
Guy Medal in Gold of the Royal Statistical'Society, (London, England)
the Newcomb Cleveland Award of the American Association for the Advance-

r •ment of Science and the Centennial Award of the Academic Senate of the• ' I University of California at Berkeley. In 1963, he was elected to the
National Academy of Sciences, U.S.A., and as a foreign member of the

Royal Swedish Academy. In 1966, he was elected to foreign membership
in the National Academy of Science of Poland. He was elected an honorary
member of the International Statistical Institute, a Fellow of the
American Statistical Association, of which he was Vice President
1947-48, and a Fellow of the Institute of Mathematical Statistics of
which he was President in 1949. Dr. Neyman is a Fellow of several other
societies including the Econometric Society, the Biometric Society, the
Mathematical Society of France, and the Polish Mathematical Society. He
is a member of several other mathematical societies and of several
astronomical societies including the International Astronomical Union.
He is President-elect of the International Association for Statistics

* in Physical Sciences.
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erotessor Neyman's research can be divided into three parts. First,
he worked in pure mathematics, but, then beginning in the late 1920's,
he turned to the thenry of statistics. He developed, jointly with E. S.
Pearson, the theory of testing hypotheses and also developed the theory
of confidence intervals. Even while Dr. Neyman was in Poland ind in
England, he was concerned with the application of statistics. After he
came to the United States, his interests turned more towards applications
of statistics, especially sampling theory and applications in the various
sciences including astronomy, biology, and health and weather modification.
His principal recent theoretical work has been the development of the
C(a) test for testing composite hypotheses.

During World War II, Professor Neyman and the Berkeley Statistical
Laboratory worked on tactical problems of the Air Force under the National
Defense Researcn Committee. He has served on many comnmittees concerned
with statistics in branches of the Government, in scholarly societies and
in education.

Professor Neyman is the author of Lectures and Conferences and of
First Course in Probability and Statistics. He is the editor of
Beraoulli-Bayes-Laplace Jubilee Volume and of the Proceedings of the
Berkeley symposia, which now amounts to 17 volumes running to more than
7,600 pages. In addition, he is the author or co-author of more than
200 scientific papers in scholarly journals. As noted above, his
publications form the very basis of modern testing hypotheses and
interval estimation. Indeed, they are now regarded an classical and

the earlier papers have been republished jointly by the Cambridge• ~University Press and the University of California Press in two volumes:

one contains the paper joint with E. S. Pearson; the other contains the
remaining important papers published before 1945. Several of his books
and papers have been translated into Spanish, Polish, and Russian. I

It is probably correct to state that Professor J. Neyman is one of
the most outstanding statisticians in the world today, due not only to
his extremely importantbasic contributions, but also to his great
activity in using the fundamental concepts in many fields of applica-
tion and in constructing stochastic models with such diverse and important
phenomena as a two-stage theory of carcino-genesis and the distribution
of galaxies in space.

Professor Neyman has many students and by now grand students and

great-grand students all over the world. Almost all of his students in

Poland were killed by the Nazi invasion. However, since he attracts
students to Berkeley from every country, there is by now a new generation
of Polish students of Professor Neyman's. Today, his doctoral students
are working in theoretical statistics, in problens arising in the design
of weather modification experiments, in carcino-genesis, in the transfer
of memory, and in several intricate problems in cell biology.
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Professor Neyman is admired by his colleagues and his students in
creating a stronger science, a more meaningiui eaucation, and a beLLeL
world in wnich to live. Tn addition to the high esteem of his colleagues
and students, Neyman enjoys :heir affection. Distinguishing characteristics
are his intellectual inspiration and dedication.
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PROBLEMS IN EVALUATING TREATMENT RESPONSE
OVER UNEQUALLY SPACED TIME INTERVALS

Cerhard J. Isaac
U.S. Army Medical Research and Nutrition Laboratory

Denver, Colorado

ABSTRACT. Test subjects are first conditioned and then various
physiological parameters are measured at a sea level location to provide
base-line values. After moving to high altitude the measurements are
repeated several times at unequally spaced time intervals. Final
measurements are made upon return to sea level. Interest exists in such
findings as the initial impact of h-gh altitude exposure, possible ad4'ust-
ment to altitude and effect of return to sea level. What statistical
analysis will provide the most appropriate basis for inferences about
the questions of interest? Analyaes considered include analysis of
variance and paired t tests against control.

The problem I am going to outline for you became of special interest to
me in connection with certain high altitude studies carried o'it by our
Laboratory. Basically these studies involved the moving of test subjects
from sea level to high altitude (14,100 ft.) and back to sea level. A
primary interest was in the effect of altitude on performance. Also of
interest were possible explanations of the physiological basis for changesin performance and in ways df ameliorating the effects of abrupt movement A"

to high altitude.

i ~Parameters selected for measurement include those which prior studies, •
or knowledge of physiological proc'sses, suggest may be responsive to
changes in altitude. Initial measurements made at sea level, after a

Speriod of training, provide the control of base-line values for each subject.
The effects of altitude are reflected in subsequent measurements on selected
days at altitude. This might follow a pattern like days 1, 3, 7 and 14
after arrival at altitude. Final measurements are made upon return to sea
level.

An appropriate statistical analysis is desired to provide a basis for
answers to a series of questions about the parameters measured. Inference
drawn will reflect not only comparisons among the findings, but also will
deal with the physiological aspects of the parameters. In a given case

* the fact of signigicant change may be more important than the direction
of change, though direction also may be of concern.

It may be useful to list some of the questions that arise in a study
of this kind.1 i. What is the initial impact of a move to high altitude?

a) Is the parameter significantly modified in any way by the change
in environment?
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2. What is the effect of remaining at high altitude?
a) If the initial impact is a modification ot the control values,

do they tend to subsequently return to normal, do they tend
to modify further or do they remnin Phnur AR Initially modified?

b) If there is no significant initial impact at altitude, is there
a tendency for values to change gradually as exposure to altitude
continues? Is there reason to believe there is a training effect,
an adjustment to altitude, or that some other factor is operating?

V 3. What is the effect of returning to sea level after a period at altitude?
r a) Is there an immediate return to control levels?

b) Is there a delayed return to control levels?
c) Do values find a level different from both control and altitude

levels, as in the case of a continuing training effect?

The obvious overall problem Is that of selecting statistical procedures
-hat are both valid and appropriate for testing the various hypotheses

implied in the series of questions posed. Also to be considered is,
which statistical procedures will contribute the most toward extracting
the maximum amount of useful information from the data.L, Let us consider first a statistical evaluation that starts with an
analysis of variance. This permits inference regarding the presence of
significant differences among the means for the measurement days. At this
point, however, there is no direct information as to which differences
between days are significant. For example, we have to look further for
"information aboutthe significance of the initial impact of moving to
altitude as reflected in the control measurement and the first one at
altitude. Furthermore, the size of the difference between these measurements,
or any other pair, may reflect both treatment effect and the number of days
elapsed between measurements.

anvAt this point I became disturbed at the implications of using an overall
" anova as the basis for some critical difference which would be used to test
for significant differences between various means. The difficulties seemed
to be much the same whether I thought of unusual variability among the
subjects at this time because of accidents of selection, variability in
the state of conditioning or adjustment to the test procedures. Of course,
especially when numbers are small, the usual observations about the paired
t procedure are in order. A minus factor is the loss of degrees
of freedom, and a plus factor is the incorporation into the calculation
of the correlation between the two sets of response data. Thus this
analysis places a premium upon consistency of direction and extent of
change among the subjects. As we well know, if all subjects tend to move
in the same direction and in about the same proportion, even a small relative
change may show up as highly significant. But such a comparison utilizes only
a portion of the data in determining the error component, whereas anova
utilizes the entire set of data.
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The main argument for the paired t test seemed to lie in the
U.LcLLness of the interences that could be drawn. The test between
control and initial altitude values would provide an answer to the !
question about possible significant changes due to the initial impact
of altitude. Comparisons with subsequent days would reveal if significant
changes persisted and for how long. Or, in the case of a delayed reaction,
when a sigificant difference developed. Comparisons between control and
final sea level values would reveal the extent to which there was, or
was not, a return to original levels. This would reflect possible training
effects or carryover effects related to the stay at altitude. Similar
paired t tests made between altitude days would throw light on the effect
of sustained living at altitude. Or comparisons could be made between
final altitude and final sea level measurements.

It would seem that in the paired t approach the emphasis is on
changes in the levels of the measurements under the various test and
there is a minimum concern over the length of time intervals between
measurements.

An extension of the problem occurs when the test subjects are subdivided
into treatment groups. A common procedure is to put all subjects through
a conditioning program at sea level before making control measurements. When
the subjects-are moved to altitude one group may be fed a diet, or.a drug,. '
that it is hoped will mitigate some of the undesirable responses to altitude

exposure. If the randomization process used to make assignments to the
treatment groups is successful, the control values of the groups will be
in close agreement. By the same token, if the treatment is successful,
there will be divergence at altitude, and possibly a return to
agreement when again measured at sea level,

A two-way anova can be performed but questions of logic arise because
of the patterns in the responses. Often, the response curve is essentially
parabolic in form and is anchored at control and final sea level values.
Only the "middle" is really subject to treatment response. It would seem
that this would lead to understating the average difference between groups
because the "end" values, by design, have minimal variation, whereas, treatment
response, if present, is concentrated in the "middle" values.

It would appear that there are several options for approaching this
problem. If there are only two treatments, it would seem appropriate to
first run a t test of differences between treatments at control and at
return to sea level. Non-significant differences at final sea level might be
said to confirm this. On the other hand there could be significant differences
because of treatment carry-over effects on a particular parameter. Or for
that matter, training effects not related to treatment could also be present.

By means of t tests, the differences between treatment groups could be

evaluated at any time-point. It is possible to determine if significant

differences between treatments appear as a reflection of the initial impact
of altitude, staying at altitude, or returning from altitude to sea level.
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complex. It would appear appropriate to evaluate differences at each time
period separately. Anova is a possibility. This could be followed by some
of the tests of all differences between means, to find which treatment
differences contribute the most to overall variability.

Under either approach, when treatment groups differ significaetly at
control, no simple answer follows from comparisons at later times. If
significance disappears at subsequent dates, it may be that the passage
of time, training or adaptation to environment, tend to make the response
in the treatment groups the same. If the groups are significantly different
on all measurement days, the interpretation is at best ambiguous. It could
be that all of the tLSt subjects happen to be responsive to altitude in
the same way regardless of treatment. Quantitatively the values may be
at difierent levels for the various treatments. Again this could be due
to chance, or poor judgment (or lack of randomness) in assigning the test
subjects to treatment groups.

The problem we have been considering is not uniquc- to the experiments
I have been using as examples. There are parallels in other areas. A
common experimental procedure in nutrition research is to feed test and
normal diets to groups of rats during their most active growth period.
This may cover a period of 8 to 12 weeks immediately after weaning. Comparison
of the growth curves during this period is one way of evaluating the
response to the test diet. Usually initial group-average weights are very
close together. This is partly by intent, and is accomplished in any of
several ways. The experimental animals may be purchased under specifications
limiting the weights to a fairly narrow range. The animals may be assigned
to treatment groups entirely at random, or arrayed by weight and weight
pairs distributed to treatments randomly. Either method usually results in
treatment averages that agree closely.

The experimenter may be interested in either the final weights or in
the route by which they got there. With initial weights not significantly
different, the final weights for the two treatment groups can be examined.
A t test of the difference between the group means seems appropriate. If
the difference is significant, there may be interest in when this became
apparent. In a 12-week experiment, differences might be tested at 6, 8 and
10 weeks to locate when the divergence became significant. Actual times
could be selected from examination of the raw data in chart form. In most
of these experiments the precise shape of the growth curves is less interest
than evidence of significant divergence. In any event, it would be possible
to establish whether differences became significant early or late in the
experiment. Also in the case of non significance of final differences,
it might be useful to know if significant differences appeared at midpoint
and then disappeared as the laggards "caught up." In general, however, the
primary emphasis has been on differences and not on levels of weight
achieved at any particular time. In some experiments, such as involving
mature animals, there could be interest in level changes within treatments
as well as in differences between treatments.
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To Ret back to the altitude oroblm. •ra thr. nthmv- lnalyt4%,A..9
One that occurs to me is to express a parameter in some other form to
facilitate comparison. Perhaps values for each subject expressed relative a
to his control as 100 perecnL might permit meaningful evaluacton. Or
would ic suffice in a given case simply to note that under one dietaryregimen, values at altitude are not significantly different from control a
while under another regimen, they are.

I have not found a satisfactory and definitive answer of universal
application in experiments of the kinds I have used as illustrations.Z~~t would seem that a large dose cf judgment is essential to guide a -
statistical evaluation of this kind. The reaction of the panel to the
various possibilities is solicited. Suggestions for entirely different
approaches also are in order.
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ANALYSIS OF DATA FROM THE WOUND DATA AND 4

MjNITIONS EFFECTIVENESS TEAM IN VIETNAM

W. Bruchey, L. Sturdivan, and R. Whitmire
Terminal Ballistics Laboratory

U. S. Army Aberdeen Research and Development Center
Aberdeen Proving Ground, Maryland

j. INTRODUCTION. Efforts of the U. S. Army to gather data on wound
ballistics dates back into the 19th century. In "modern" times, the
laboratory experiments have been supplemented by data gathered in the
battlefield. We refer, of course, to the U. S. Army Surgeon General's
report on a number of engagements in the second World War and Korea,
entitled, "Wound Ballistics." Until the Vietnam conflict, however,
efforts to collect field data were rather limited in both breadth and
depth. In August, 1966, the Vice Chief of Staff, U. S. Army, made
known the requirements that a study be undertaken to gather data
pertinent to evaluating the effectiveness of antipersonnel munitions
deployed in Vietnam, including a comprehensive study of wounds and
post-wounding behavior of resultant casualties. The Wound Data and
Munitions Effectiveness Team, called WDMET, was organized to fulfill
this mission. A data collection format with eleven (11) sections
dealing with specific areas of interest was compiled from the require-
ments of relevant government agencies. A team of forty-three (43) men
with various military specialties was given training in ballistics,
wound ballistics and collection procedures in late April and early May,

1967 at the Army Chemical Center, Edgewood Arsenal, Maryland. By late
July, 1967, the Team was in operation in Vietnam. Another group of
about ten (10) men was assigned to Edgewood Arsenal as a center for
receiving, processing and analyzing the data from the Vietnam Teamso
In conjunction with the Wound Ballistics Group of the Ballistic Research
Laboratories (BRL), Aberdeen Proving Ground, a complete system for
storage, retrieval, and analysis of the WDMET data was designed for
the BRL electronic computer, BRLESC.

The WDKET Team in Vietnam was organized into four (4) sections:
(1) Headquarters and Support Section in Saigon; (2) Section I in An Kae,
following units of the lst Air Cavalry; (3) Section II at Cu Chi, covering
elements of the 25th Infantry Division; and, (4) the Pathology Section at
the Saigon Mortuary. Each section studies American casualties from a
battalion-sized unit. Section I reported on 100% of the casualties in
its selected units, while Section II covered all casualties in selected
engagements. The Pathology Section autopsied the "killed-in-action" and
"died-of-wounds" casualties which had been covered by the field teams.
In addition, they performed autopsies on selected cases not covered by
the field sections, but which could contribute to fulfilling the WDMET
mission.
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cases contribute useful information to only a small part of the WDMET
area of interest. The cases are not randomly selected, and they are
"typical" only insofar as the war in the two areas covered in typical
of Vietnam as a whole. The enemy's weapons are often improvised or not
seen, making identification or characterization of the weapon difficult
or impossible in those cases. This type of data was collected under
most unfavorable conditions, to say the least. The WDMET personnel, of
course, were never allowed to interfere with the mission of the units
being covered or with the proper medical treatment of the wounded. Data
could not be obtained until the engagement was terminated.

In addition to the problems inherent in the method of data acquisition,
biases are present in the data selection procedures. As stated previously,
Field Section I attempted to get information on all casualties from a
selected unit. This was done whenever feasible. However, due to the
limited number of personnel available for data acquisition and the nature
of the Vietnam conflict, there were periods of intense activity during
which it was not possible to cover every casualty. There was necessarily

l some case selection on an individual basis with the team member forced to
select the "most valuable" cases. Field Section II, on the other hand,
selected incidents from which all casualties were covered. Incidents
were generally selected on the basis of weapon or weapons involved and
the availability of information.

As the completed casualty reports are received at WDMET(C), Edgewood
Arsenal, they are coded onto punch cards and are submitted to the Wound
Ballistics Group at BRL for processing on the BRLESC computer. The

S",actual processing of the coded information is handled by three separate
computer programs: (1) an error checking program; (2) a print-out pro-

7 , gram; and, (3) an analysis program. The error checking program checks
for selected punching errors in the input data; the print-out program
reads the input data and produces a narrative print-out for each
casualty report. It is the third program which is of interest here.

At present, the analysis program produces a simple enumeration of
the frequency of occurrence of the various factors contained in the
study and correlations among the factors (frequency of occurrence of
two or more factors in the same case). Presented here is a selection
of correlations generated by this computer program. These specific
correlations were chosen because of their interesting content and the
likelihood that they would contain the largest number of data points
for our limited size sample.

Our problem centers about the interpretation of selected correlations
and methods of determining if significant differences exists between the
distribution of groups of data as it is received from Vietnam.
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II. FREQUENCY OF OCCURRENCE OF FACTORS. The eleven (11) sections
of the data collection format are composed primarily of coded information.
For example, the type weapon carried by the casualty was coded as follows:

Code No. Weapon

0 Unknown
1 M16
2 M14
3 M79
4 M60
5 Mortar
6 Rocket
7 Other

SIn this manner, it was possible to determine if a factor occurred and
how often. The following three tables represent this type of enumeration

of factors.

The data presented in Table 1 represents the number of casualties
associated with each injury type for the first 930 cases received and
coded onto punch cards by WDMET(C). The totals on injury type come to
904 cases; adding to this the 26 cases which had no information on
injury type bring the total to 930. It should be understood that this
distribution is not truly representative of the Vietnam conflict as awhole in that there is a higher percentage of fatalities than is found X

in the casualty distributions as compiled by the Office of the Surgeon
General. This is due primarily to the fact that the personnel located
at Saigon Mortuary performed a number of autopsies in wound pathology
studies apart from cases studied in the field. When this is taken into
consideration, much of the difference between the true distribution and
the WDMET distribution is removed.

The upper half of Table 2 lists the types and frequency of occurrence
of body armor encountered in the study thus far. The total number of
casualties who were wearing body armor was 139; those known not to be
wearing armor, 565. This gives a ratio of 4 to 1 of armor not worn to
armor worn.

The number of hits on the body armor and helmet is shown in the
upper half of Table 3. In general, one would expect the quantity of
hits on the helmet and body armor to be large. Out of 139 casualties
wearing body armor, more hits should have been on the armor. Likewise,
there were 585 casualties known to be wearing a helmet; this is 80Z of
the 721 cases which contained the body armor set. Using information
compiled from the analysis program, it was found that the average number
of hits per casualty was 3.4. Using this information, the following
table may be constructed:
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B. A. Helmet

No. Known to be Wearing Equipment 139 585
Avg. No. Hits Per CasualLy 3.4 3.4
Expected No. of Hits 473 1989
% Body Area Covered by Protective Gear 23Z 7%
Expected No. of Hits on Equipment 109 139
Actual No. of Hits on Equipment 49 66
Actual No. as Percent to Expected No. 45% 47% 4

£ From these calculations, it is concluded that more than half the
armor and helmets are not available for examination or that hits are
not noticed on the equipment examined (e.g., in a helmet which is badly
battered from driving tent stakes ur armor with worn or frayed spots
concealing small hits).

The lower half of the table shows the quantity and boot type worn.
The table for the "no boot" category suggests that during the shelling
of base camps many troops are in bed or relaxing with their boots off.

111. TWO-WAY CORRELATIONS OF FACTORS. In addition to simple
..- -enumeration of.the various factors studied, correlations between paires

of factors were also found, an example 'of which is presented in Table 4.
The correlation is between wound location by six body areas and activities
accomplished or not accomplished. The intent in gathering this informa-
tion wvs to explore the relationship between wound location and incapacita-
tion. The speed with which the casualties are evacuated seldom leaves
the soldier time to attempt any task. The data seaem to show that the
soldier seldom tries something he cannot do; as activities accomplished
outnumber those not accomplished by over nine to one.

Another two factor correlation, weapon versus location of hit, is
contained in Table 5. The right hand column is the total of the row
for each weapon. To circumvent the overwhelming quantity of numbers,
two major groups of weapons were extracted to make the last two rows.
Theme wo groups will be referred to as rifles and fragments hereafter.

i r To further simplify matters, the wound distribution for rifles and
I • fragments is transformed into percentages in Table 6.

Table 6 also chows the distribution of wounds of body area correlated
with a number of ovher factors. The first column shows the wound distri-
bution compiled by accumulating the total number of hits in a body area
then transforming those totals into percentages. The second column was
compiled by accumulating presence of a hit in each body area over all
casualties then transforming these totals into percentages. For instance,

1, if a casualty received twelve (12) hits in the head or thorax, the
sample number under "total number of hits" would be increased by 12;
however, the sample number under "presence of a hit" would be increased
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hit in the thorax. As is evident from a comparison of the percentages
in these two columns, there is no great difference between the two i
meLhods o£ accumulating the wound distribution. Evidently, the body
area which receives the most hits is also the area most likely to be hit
(one or more times). The one possible exception is the lower extremity.
When it is hit, the lower extremity seems to get more hits than other I
areas. This could be because the lower extremity tends to have more
shielding from fragmenting munitions than the upper parts of the body,
so when a fragmenting munition does detonate near enough to the man
that the legs are exposed, the probability of multiple hits, especially
to the lower extremity, is quite high.

The next pair of columns was derived from Table 5 where the numbers
Sof hits by rifle bullets and fragments have been converted into percent- !

ages. The percentages for fragmenting munitions are almost identical to
those of presence of a hit (by any weapon), but the increased percentage
of hits in the combined head, neck, and thorax areas for rifles might well
be an indication of aimed fire.

The next group of correlation in Table 6 shows wound location versus
three categories of body position, upright, "doubled-up," and lying4
(which is 90% prone). Percentages do not differ enough, column to column,
to be highly significant. However, in each case the small difference is
in the direction which one would expect. For instance, in moving from
the upright into a doubled-up position the head, neck, thorax, and upper
extremities do not change in presented area; however, the lower abdomen,
pelvis, and lower extremity are those parts which are doubled-up, proving
shielding to each other, and thus losing presented area. The relative
percentages of hi~ts under these two areas reflect these observations.

The mean presented area of the head and neck to horizontal hits is

about 6.5% of the total presented area of the upright man. Why, then,
is there such a large percentage of hits on the head and neck of the man
in an upright position? Part of the reason has already been mentioned:
in a ground burst the fragment sprays will be limited by earth, irregulari-ties in the surface flora, stones, or other low-flying cover, so that there

will be come angle with the horizontal below which few or no fragments will
be found. Thus, the upper parts will receive more hits, on the average,
than their mean presented area warrants. If, on the other hand, the
fragments are from direct fire artillery or proximity fuse munitions
the burst is considerably above the ground. In this case, the presented
area of a man is like his appearance if one is standing on a building
looking down at him. The majority of his presented area in this case
is head, thorax and shoulders. For the soldier in the lying position,
cover is a major factor in wound distribution. More cover is offered
near the ground, and that is usually the reason the man is lying there
in the first place, to take advantage of whatever cover is available.
Therefore, we would expect that with this highly variable factor, the
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wound distribution would be very erratic, which it is. We also would
expect that the tendency toward greater numbers of hits in the higher
parts of the body would disappear, which it does.

The last three columns of Table 6 correlates injury type, fatal
and nion-fatal and cause of death to body area wounded. As expected,
for the WIA's the larger proportion of hits occur on the loast vulner-
able parts, the extremities; while for the KIA and DOW's the larger
percentages occur in the head, neck, and thorax. The last line in
the table shows that the average casualty received 3.50 hits In 1.82
body areas. Since each casualty received (on the average) several
wounds in two body parts, the distribution of wounds in the KIA and
DOW's does not show the true distribution of cause of death. For
instance, a fatality may have a bullet wound of the l.eg, but it warn
the bullet through the heart that killed him. When only the wound
causing death is considered, the last column of Table 6 results.

In Table 7, the rifle bullet and fragment wound distributions of
Table 6 are further broken down Into hits on the front or back of the
body. The purpose therein was to determine if hits about the body are
truly random for bullets or fragments. The differences which stand out
in this comparison are the front and back of the head and neck for

-~ Ifragments and the front-and back of the upper extremity for bullets.
Cnieigtelatter first, we note that the body diagrams used in
this study consider the man to be standing in the standard anatomical
position; i.e., with. the palms of the hands facing forward. In the
battlefield, the moldier can be envisioned to be holding his arms in
almost any other position rather than the standard anatomical position,

* resulting in considerable ambiguity in what is the front and what is
the back of thet arm. As a matter of fact, the palms are'usually turned
toward the body with the result that a large part of what is called the

* I front of the lower armi is usually shielded from being hit by the trunk.

* Theimuch lower incidence-of fragment hits on the back of the head
and ncmentioned earlier, is due to the ability of the helmet to
defeat most incoming fragments and the much greater shielding that the

helmet provides the back of the head and neck. When the effect of
helmet protection from fragments and the ambiguity of which is the
front or the back of the arm are removed, the lower part of Table 7
follows.* Here it is seen that there is an insignificantly small dif-
ference between the percentage of fragments striking the front or back
of the soldier. For bullets, on the other hand, a difference was
expected because of the highly directional nature of rifle fire; viz.,
in a fire fight the troops are usually facing each other across sane
kind of battle front.

Talt hw h ubro nure n aaiisdet nm
fieas a function of weapon. The first two columns contain the numbers

t of fatal and non-fatal cases while the third column lists the ratio for
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the two. The quantity NF/F will be referred to as the "survival t
index." Thus, weapons such as rifles and the Claymore mine have a ,
low survival index (or, conversely, a high fatality rate). The
recoilless rifle and large land mine display a moderate survival
index while most other fragmenting munitions show a moderate to high
survival with hand grenade and artillery showing a very high index.
In the lover part of the table, the rifle and fragment combination
groups aoe listed.

s V. THREE-WAY CORRELATION OF FACTORS. Figures 1 through 6 all
show the results of one correlation of throe factors, injury type

(KIA, DOW, WIA, etc.), weapon, and distance between the casualty and
weapon (or detonation). Figure 1 displays graphically the cumulative
distribution of fragment and rifle bullet injuries regardless of injury
type. The curves show that fragmenting munitions are much shorter range
weapons than rifles, as would be expected. To quantitate this, note
that 90% of the fragment wounds occur at 40 meters or less whereas 90%
of the bullet wounds are accumulated only at 160 meters. Figures 2 and
3 split the data in Figure 1 into fatal and non-fatal wounds. Ninety
percent (90%) of the fatal fragment wounds occur at ranges less than
30 meters. Ninety percent (90%) of fatal bullet wounds occur at ranges
of 125 meters or less. Figures 4 and 5 show the same data presented in
a slightly different manner.7

Figure 6 shows a slightly different method of presenting a three-
way correlation. The factors correlated are weapon, range, and number
of hits a casualty received. Specifically, the curve in Figure 6 is
the cumulative distribution of number of hits for fragments. The
family of curves represents categories of range. Similar data was
obtained for bullets, but the sample sizes were too small to give a
coherent form to the curves. These last five curves indicate the
difficulty one has in displaying multiple correlations even when the
weapons were combined into only two categories. Presenting a full
four-way correlation in a reasonable space borders on the impossible.

In the future, as more cases are entered on punch cards, a similar
"analysis" will be conducted using more factors and more extensive
correlations. It is hoped that sample sizes will be large enough, and
definite enough, to clear up the inconclusiveness in some of the data
presented here.
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PrAAnrpA of a Hit.

E E

IL

Weapon:

Rifle -M16 0 3 0 0 5 119
Rifle- M14 0 1 1 0 0 0 2
Rilfe -AK47 11 17 2 6 12 11 59
Rifle -Other 41 45 11 9 39 31 1 176
pistol 3 3 1 1 10 6 24
Machine Gun 2 2 2 2 7 71 22
I mprovised 31 37 12 30 48 41 199 L_

*Wpn Launch Grenade 20 22 7 9 31 21 110
*Hand Grenade 32 46 20 24 55 58 235 5
*Mortar 31 31 9 15 26 23 135
* Claymore 1 8 4 7 9 7 36
$A-P Mine 0 1 0 1 7 2 11
*Large Land Mine' 5 5 2 1 9 6 28
*Artillery 7 15 3 6 16 8 55

Bomb 0 2 0 0 3 3 8
* Blade 0 0 0 0 0 0 0

Puncture 0 0 0 1 3 1 5
Toxic 0 0 0 0 0 0 0
Flame 1 0 0 0 0 3 4
Other 47 57 20 30 57 50 1261

* Recoilless Rifle 6 2 6 12
"Total 23 7 30 1 9 14-8 49 286 iT

Rifle, AK47, Other 52 62 13 15 51 42 235
*Fragment 101 134 47 69 165 132 648U

202



ISRSUON-YHM -

4A (MOO+YIN)I

A (BIA1) d 8 -

fX' 'UI4?neuu
ARMDI4S) d 9 P'4.J

oq~ PA

en G

_ ~sUOII~awpei

00 14% P-1iCo

jo bo/ugmv.d

C 10O fe0N 14 LM C24O0j

I.-A

2032



C4-

ccJ C co
odq~

4A

I' Pt LL.~

_ __-7_ _ _ _ LA-
r- C

IRA~

*141 -L.tot

LA.J

ad I.
Lo-C

w -b

* 204



C=; V C%; %; I
4A4

rP6e4 C=~ ~p 'op~ C4o4j(%jp*qr

40

IAI
*02

S I

oo 'Dv

CL C~n

205



AI' I' 'I II I II14-444WI444A4 -44 41-l41++--tHi-H ili

ITI

04206



f4f

-CA

21

jj ~ ~ sel~en:3 -- -------



FNLI

i selglenseD

208



db44ULi4-1 FIL4

Jbtz, II
~T-1

*iij.KL~jj i fit! ~JL-4

2+



rrT

ETT

-------

121



1t It1 1 I

tt

1A -- -----

til

2114



U
g

EFFECT OF NUMBER OF OBSERVING STATIONS
ON FLIGHT MEASUREMENT PRECISION

Fred S. Hanson
SNational Ranlle Operations •S.

While Sands Missile Range, New Mexico

ABSTRACT. l•stimation of the standard error of a measured space-
position is r•viewed. Pooling such standard deviations for the portion of a
trajectory covered by a given measuring system - and for a series of tests on •

,._ the same missile - is discussed. Results are presented showing the dependence =,•
•i of average position-precision on number of stations used in the solution. The
)•: correlation of these variables in operating data is dominant and the:,.•!
i magnitude of the effect is profound, The exponential improvement of
•. position-precision by increasing stations can be as much as four times the '<•!
•; effect Of increased sample-size on the standard:•rror-of-the-mean of a normal •i-
,,,: distribution. Mechanisms considered embrace: geometric convergence. •
!, observational constraints,' methodological deficiencies, and statistical con- !.!
• siderations. The exponential dependence of position-precision on number of :•i•,
:., cinetheodolites inay be an index of the measurabilit,/ of the object
i• ('readability' of its point-of-reference). Statistical measures-of•goo•ness of •, .•

geometric convergence are derived. A procedure is suggested for rating
test-configurations. It is shown that calculating observationally-redundant
precision Of notzredundant solutions is a generalization oi• the classical
calculation of the precision of single observations from tile precision-of-the-
mean of a sample of a given size. A need is suggested for a statistics of
observations whi•.h define geometric surfaces in space. (This may be a
generalization of numerical statistics.) Results are also presented showing the
dependence o•" precisions of derived velocity and acc,'leration on number of
stations. A probabilistic improvemem of physical accuracy (bias) by
increasing stations m flight-measurement is hypothesized. A summary is
appended.

ThJ.s paper has been reproduced photographlcally from the
mantmcript sttb•1•ted by the author.
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INTRODUCTION. Our reviews of over. and under-meeting of quality requirements made it necessary
to investigate the relationship between quality and resources in our data-support operation.

We had been aware of the statistical improvement of precision in which ordinary averages bunch closer

toethcr in proportion to the square root of the number averaged.

Much of the following work was published in internal memoranda during the fall of 1967.

BACKGROUND. This paper is clinical in the sense that it is exploratory.

Since January 1963, White Sands Missile Rangp has built a sufficient, standard basis for a
data-precision spec into its user-document format - in the interest of oomparability. (We say what we mean
by our numbers, and that we assume the user's numbers mean the same thing- unless he makes it very dear

, otherwise.) WSMR-stmndard precision is the avenage standard-error of component values of data, obtained
by propagation from the previous stap of the collection-reduction process. This precision-index can be tied
back directly to station quality, and film-reader quality. It applies to the data in the form In which it is
reported.

Our data-precisdon is many things. It's the radius of confusion of a data value, due to the disagreement
among the stations. It's how well we can know from the observations what the value is. When related to a
"valid requirement, it's a measure of Ranp effectiveness. Precision is available in current operation. It:

affords a means for operational control, and suffices for some of the user's needs. Apparently, In
flight-measurement, optimizing system precision tends to optimize system accuracy. We fumish our users
the precision of each data value. And, we use root-mean-square average precisions- by segment, by tist, by
month, and by program . for operating and managment control.

o I gave a historical and exploratory paper on data-support quality control three years ago at the Design
of Experiments Conference (Ref, 1). Our monthly Data Quality reports (Ref. 2) give actual averap
precisions - by station, by measuring system, and by missile - along with the reqnlrements and
commitments. Averages me monthly, and cumulative for the fiscal year. Being definite and quantitative,
keeping usable scores on data quality, and controlling cosely on the basis of results are a bit of a departure
from missile-ranie tradition. Personally, I feel it is to the admtage of mission personnel to provide
management quantitative bases for decisions.

ESTIMATION OF PRECISION. Figure I is a summary of the math we use to calculate precision of
observed position for dnetmeodolites.

This Is from our Data Reduction Handbook - 'R. C. Davis' method (Ref. 3). We solve for position by
minimizing the sum-of-squares of the deviations of the stations in azimuth and elevation, from thclr
least-squares pcint. In the first equation, cos eI allows for the fact azimuth circles get smaller is one goes up
- until 'the universe comes to a point directly over each of our stations', As the azimuth circles get small we
lose resolution; the azbnuth error becomes something between ungodly and unknown. So, we temper it by
the cosine of the elevation angle 1) We average the angular deviations as their squares. The square root of

T)Reference 14 is a formal explanation of this correction.
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that (aA) is our measure of the average disagreement among the angular observations. Use of the
3-dirneniional degrees-of-freedom (2N-3) yields an estimate of the population standard deviation of angular
observations (of what it would be if we could repeat them indefinitely).

Now. we least-squares in 3 dimensions. But, forever after we treat the components separately; as
though they had heen independently determined (we'll come back to that). Multiplying the variance of the
an irdlar deviations by the cofactor of the proper element of the (principal) diagonal of the determinant of
the least-squares matrix, then dividing by the (value of the) determinant is said (by a liberal interpretation)
to transferai tl••. angular variance to a linear-component variance of the least-squares position mean. It is
planned to te'ifv this last point by: converting anglar residuals to their linear-component equivalents;
calculating standard-deviation and standard-error-of-mean of each set of these (about the least-squares
mean): noting which is closer to the matrix result.

We finelly multiply each standard deviation by the proper value of the t' statistic, to correct for the
relatively small departure from normality at the 68.3% probabitity level due to the small sample-size alone

41 : (to the small degrees-of-freedom), Additionally, we usually obtain a precision of smopthed position by
T •dividing the standard-deviation of a series of points, about its 2nd-degree fit, by the proper reduction-factor

in terms of the number-of-points. (We are not yet incorporating lack-of-fit into ,smoothed-position j
precision,) Our precisions of velocity and acceleration are obtained by propagating smoothed-position 4"

N! precision thru the Ist and 2nd derivatives of smoothed position.

AVERAGING PRECISION. It is physically necessary to describe measurement quality in terms of
frequency distributions, It is operationally and managerially necessary to describe data quality In job lots
(segments or tests) - and wholesale (series-of-tests). Since January 1963, WSMR has officially defined data
quality as the average precision for the firings covered by the documentation.

When. a requirement or commitment is met aflinhs-average, approximately 68.3% of the data values fall
within the. stated tolerance of their statistically-true values. (i.e., When compliance of the individual
standard deviations is 50%, average compliance of the data values which they characterize approximates
68.3%.)

In root-mean-squaring a component precision for a segment or a test, our denominator is the number
of component values. Then, our test-average quality is the root-mean-square of the 3 test.average
component precisions. (Yielding the radius of that sphere which conventionally approximates the average
error-ellipsoid.) In our monthly and cumulative project averages, tests are given equal weight.

What constitutes a statistical population is an operational decision. Our average precisions are
calculated by the same procedures each time: so they have ar, operational validity (we're not in the rigor
business). We are interested in knowing the magnitude and direction of the errors resulting from our
nonivorytower applications of ivorytower methods.

One purpose of statistics is to numerically characterize errors. This paper suggests that includes
numerically characterizing the errors incurred in applying statistics to the real world.

Let's look at some operational findings.
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EFFECT OF NUMBER OF STATIONS. In this investigation, test-average precisions were sorted by
average-zumber-of-stations (to the nearest integer) in the solution. Each group of precislons was then
root-mean-squared; the denominator being the number of rounds.

Figure 2 shows averagp precision of position of Navy bombs vs average number of Askania
(cinetheodolite) stations computed (Ian-Jul 1967). The horizontal ticks are the plotted points. Numbers o0
the graph are the number of rounds (tests) represented by each plotted point. The number of
position-points in one of our tests varies widely. Typically, it is a few hundred, times 3 components. The
Navy bomb-drop is a highly diversified program. In a manner of speaking, the range and user 'did their
worst'; but the average quality depended on only one variable (except for the limited 5-station data). That
data is shown both as is, and after deleting the worst round. It may indicate they were running out of
reasonably well-located stations for covering the bomb, which impacts the ground.

GENERAUZATION OF MODEL. Please turn to Figure 3. This merely looks hard. It's only one
equation (equation (5))- transformed (equation (1)) . and generalized (in both forms). If our only effect
were numerical redundancy, position quality would improve in proportion to the square-root of the
number-of-observations (Ref. 4). Or, to the square-root of the number-of-stations, since the number-of-
observations per station is constant for a system, Equation (5) is the basic form, for optics, of this classical
theorem (for x normally distributed). For radar the 2 becomes 3; for DOVAP It becomes 1.

When the only effect is number of observations, the population standard deviation of individual

observations (oa) is of course unchanged. So, if equation (5) is used twice in constructing a curve, it reduces
to Its working form, equation (1). You might guess that (6), (7), (8) and (2), (3), (4) were empiricaily
derived by generalizing the exponent in (5) and in (I), Equations (5), (6), (7), and (8) are hyperbolas of the

respective types:

XA yak, xymk, x" yak, x1yak.

In Figure 4, the operational curve is the solid one. The working form of the classical-statistical

equation was used both ways from a midpoint to construct the curve shown as a string-of-beads. This didn't
do the job so we had to look further. The upper half of the Navy-bomb curve Is closest to improvement of
precision as N 11. The lower half is closest to N3. Overall, it's a tossup between those two, Physical
interpretations of these 3 hyperbolas are possible at each ½-station, for optics, At I-% stations, the curves
represent standard deviations of single observations of a point-in-3-dimensional-space. The interpretations
of infinitely-poor precision for zero stations and of infinite stations for perfect precision are obvious.

VARIABILITY AT A GIVEN NUMBER OF STATIONS. Curvilinear correlation coefficients might be
calculated for equation (7) applied to the upper half of the Navy-bomb data and for equation (8) applied to
the lower half. Differences between these and unity would estimate the relative influence of all factors
other than number-of-stations. Further. the standard deviations of individual-round precisions about the
pooled values, at each number of stations, could be calculated from the round-average data. Or, they could
be calculated about the corresponding points on the fitted curves. These sigmas could be used to set current ,
individual-round tolerances for the models, at each number of stations (it is planned to use this approach).
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The corresponding tolerances of pooled (cumulative) precisions could be estimated as the appropriate
standard deviation of individual rounds divided by the square root of the number in the average. In
calculating correlation of round.average precision, or in controlling a cumulative average, the average
number of stations should be carried to the first decimal place (it is avadlable to 4 places).

Dr. H. H. Germond suggests plotting average precision vs number of stations on log-log paper. That, in .

this way, the data may be fitted with straight lines whose slopes are negatives of the corresponding powers
of N of the hyperbolas (Ref. 5). Straight lines fit people better, This investigation has emphasized direct
study of the relationships. Linear correlation coefficients would of course apply to log precision vs log
number-of-stations, rather than to precision vs number-of-stations.

FURTHER DATA. Figure 5 shows average precision of position of Navy aircraft vs average number of
Askania stations computed (Jan-Jul "67). The curve is less steep than for the bombs. There is no clear
indication they were running out of stations well-located for covering the aircraft. Figure 6 shows that, for
the aircraft, precision came closest to improving in direct proportion to number-of-stations. g

Mr. Frank Hemingway suggested we look at the vertical component separately. In Figure 7, the dashed

curve is the average quality of Navy aircraft x, y, and z from Figure 5. The solid curve is the precision of the

vertical component only. From inspection of other WSMR cinetheodolite data, this better precision of the
vertical component appears to be a general result. Without z in the composite, the difference would be half
as much again. Please note that these are parallel, except that the z-curve is a bit flatter near the right-hand
end.

Figure 8 shows the effect of number-of-stations on Redeye Contraves (cinetheodolite) precision-of.

position was dominant and profound, even with less data (Jan-May '67) than on the Navy tests. In Figure 9,

the upper part of the Redeye curve was about a tosup between N312 and N1, The lower part was Na. I
gave N2 a little edge, overall.

Figure 10 shows the precision curve was slightly less steep for the Redeye target (Jan.May '67). In
Figure 11. this relationship was a tossup between N and N3' 2 for the upper half, N3'2 lower and overall.

Figure 12 shows precision of Askania position-measurement on the PEARL aircraft radome (Jan-Jul
'67) improved approximately as N0, if we lightly regard the poorer 4-station data. If we delete the worst
rounds, as indicated by Figure 13, the 3-station data was better than the trend of the rest; the 4-station data
was on the curve: the upper half improved only as N' ,3.

In Figure 14, if we didn't take our result too seriously, we might approximate this Redeye
fixed-camera data (Jan-May '67) by the solid curve - which turned out to be nearest to improvement of
precision in direct proportion to number-of-stations.

Figure 15 shows a similar situation held for this limited DOVAP data on Lance (Oct '66 - June'67).
Because of the very small amount of data, it appeared desirable to also look at 2 of the averages on the
assumption that they might not be representative samples. In Figure 16, our solid approximation turned
out to fall closest to improvement of precision in direct proportion to number-of-stations.
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Preliminary indications were that the uv:dete staudfdd deviation of Icast-squares mean space-p;sititms
determined by FPS-l6 radar typically improved as the 3/2 power of the number-of-stations.

Apparently, our cumulative-average component-precision of observed position converges rapidly to
correlation with number of stations.

It was noted from plotting the foregoing data-curves on the same graph that the exponential rate of
proportional (percentage) improvement of precision, with increase in number-of-stations, depends on the
magnitude of the precision values as well as on the steepness of'the curve. Smaller numerical values (bettei
precision) require less numerical improvement (less steepness) for a given exponential rate if proporlional
improvement.

VALUE OF APPROACH. Findings of this paper are being used in manageement reviews to express
over- and undermeeting of requirements in terms of resources (resource-equivalent ratios of precisions). 1 hle
foregoing data-curves provide specific resource-capability relationships by project. These are relevant to
data-support committing, control, and planning. The data will lend itself to further structuring of our
capabilities by graphing in various ways. Also, to advancing the state-of-the-art and the state-of-the-
understan ding- as the following pages indicate.

r SUMMARY FOR CINETHEODOLITES. Figure 17 is a summary for Askanla and Contraves
position.preclsion, based on all the cine-position data I have plotted to date.

The upper half of this table shows the (approximate) spectrum of dependence-of-precision on various
powers of N which was produced by the interaction of cinetheodolite systems with various flight-measure-

ment tasks. Relative point-of-reference difficulty may explain the broad precision-response spectrum of the
cines. The PEARL radar pod Is a large, black hemisphere without distinguishable markings. It is more
difficult to establish a consistent reference on large aircraft than on small, and more difficult on small
aircraft than on small or medium missiles or bombs. The exponential dependence Is apparently an index of

the measurability of an object,

Our management reviews show the factor of over- or undermeeting of requirements in terms of'
resources (stations) - where this is not identical with effective ratio of average-precision to its requirement.
The proportionalities of numbers of stations to precision are, of course, the inverses of the upper table in
Fig. 17 - as shown in the lower table. We use relationships specific to projects where they are available. If
dependence must be obtained from the table, we show the resource-equivalent ratio in parentheses.

Now, it's easy to say precision can improve in proportion to as much as N1 in flight-measurement
becase it's a 3-dimensional process. But what are the mechaisms by which this takes place - and what is
the relative importance of each? We have turned over a few stones, and here is a list:

MECHANISMS.

I. The decrease through increase in sample-size alone of our uncertainty as to what the

observations say the data value would be if we could repeat the same measuring process indefinitely. This is
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the well-known statistical convergence (Ref. 4). It is generally accepted, locally, that our 'Davis' method for

cine data effectively takes this into account.

So, 5 =" (N"m). where m = f (sample size;

Let's call this one improvement by overcoming small sample-size.

2. Improvement, through increase in sample-size, of the averae goodness of the intersection-angles
of the lines-of-sight from the stations (less chance of only bad intersections). The relationship of
intersection-angle to both precision and accuracy was jreated in my earlier clinical paper (Ref. 6). The
angle-of-intersection mechanism has some diminishing returns as the useful cones (with vertex at the
missile) become divided into smaller, less desirable intersection-angles. In multi-station measurement, the
projected intersections of each station-line with eah of the others are relevant to linear precision.

Simulations, informally communicated by Mr. W. V. Hereford of Sandie Corp. (Ref. 7), showed a
fint-power Improvement In rms postIfon-error while overcoming his 'worst-case' geometries; only a

half-power improvement while interacting with his 'best-case' geometries. (Gradual expanding of a narrow
baseline Ps gradual spacing-in of a wide one.) This establishes an effect of geometry on the power of the
precision.respons.

Multidimensional measurement depends on geometric convergence as well n on numerical

convergence.

Figure 18 shows an acute convergence-angle (smaller than the 90* convergence which Reference 6
deduced to be the general optimum). Figure 18 can be any plane through 2 stations and the missile. Let the
+ angular dispersion about the direction lines be an average angular standard-deviation (OA). k

The diagonals of the smaller almost-diamond are its linear-standard-deviation subtenders of OA hi the
directions perpendicular to and parallel to the baseline.

Solving either error-triangle, SMO, which contains the verfical diagonal (given the angles and the slant

range):

r sin CA r sin CA r sin GA

sin (180 - 0/2 C- oA) sin (0/2 + CA sin 0/2

The horizontal diagonal may be obtained from:

01/2 o1

cot 0/2 l
011/2 O1i
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whence:

(71 rsin aA r sinuA f -gl (I

Oil cot 0/2 Sill 012 Cot 0/2 COS 012 Of0

where is the parallel converge n ce-an gle.

a, may he taken as a measure of the badness of the conier~gtnee for measuring 1wrryrnfiodifty#I" I'u.
linelline. all, may he taken as a measure (if the badness of the convergence for measiirine potie7,m/ ,,'I
I':,stline. (They are inverse measures of the goodness of the convergence for these purposeq I

11 li1gure 18 is a vertical plane parallel to the baseline, cri measures the goodness of the vorticalI

riict~ ofr the convergence (in terms of the other projected quantities) for measuring the z coordinale ,
thle missile. Thisi measurement depends only on the elevation readings. Here, a, measures ao ((if Iinefir

j ~observations Iinot our standard precision of the least-squares man). Its units are those of the tlant
range.

Per the first of the above 3 equations:j

... Vertical cossvallnce fteclulon and Valliece Factors

Vertical I I
alan 0/2

I gHo". 1.00 1.00

90 1.41 2,00
4.50 2.61 6,82

7I6 58.6

1 114.4 13,120.

Thiq table compaires the goodness of vertical convergepce at any constant value of projected slant range,
which avo~ds conilfuing the effect of range onl linear precision with the effect of converpnice-angle. It
indicates thtthe optimum s'erticai converpence, per se. is not 900. That the most precise measurement of
the i-ortivai. as far as geometry goet. is when the object is In the llne-of-sight between the stations.

Vertical convergence, in Fig. INi. can he easily calculated for a given case as:

ac baseline
2 (altitude)

The keys to good vertical convergence are, of course, long baselines.

lIt he mode rif a, is defined by the mode of OA (e.g., observations, mean, series, curve, etc.).
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¶, If Figure 18 is a horizontal plane, 01 measures the goodness of the horizontal projection of the

converpence for measuring perpendicular to the baseline, and all measures the goodneu of the horizontal

projection of the convergence for measuring parallel to the baseline. (When the baseline Is east-west, 0o
measures Oxand aq meahures cr.)Since the two horizontal measurements share their plane of projection, a

gain in convergence for one is a loss in the other. In general, it's not sound practice to improve data in one
coordinate by making it worse in another. So, the practical optimum horizontal convergence Is 900.

The separate formulas for a, and Oil are of relative value for horizontal measurement.

i Otherwise, by the second of the above 4 equations:

Horizontal Convergence Precision And Variance Disparity

Perpend•,ular.-j a1

Convergence ,,.i".
1790 1/114.6 1/13,140

1750 1/22.9 1/525 A-
1650 1/7.60 1 !57.6 . . !•
1356 1/2.41 1/5.83

1200 1/1.73 1/3.00
go 1.00 1.00

600 1.73 3.00
450 2.41 5.83

ISO 7.60 57.6
50 22.9 525

1' 114.6 13,140

This table compares the disparity of the two horizontal convergences at any given ground range. The ratios

r of precisions approximate the ratios of width/length (or length/width) of the actual horizontal

hner-,observation-error ellipses, The ratios of variances approximate the ratios of areas of circles whose
dameter are the two diameters of the ellipses. (These ratios would be the same for the least-squares means

as for their linear observations.)

Perpendicular convergence in Fig. 18 is, of course, calculated for a given case as:

baseline
9 = 2 arc tan "2 (perpendicular distance)

One key to optimum horizontal convergence is the set of optimum configurations in Figure 19, which

were demonstrated in.Rcference 6. The least that should be done is to compensate a narrow convergence in

any horizontal direction with another that is roughly perpendicular to It.

The numbers in the above 2 tables are similar, but only the first table is a direct measure of loss. The
second is the ratio of loss in one direction to loss in the direction at right angles.
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A direct measure of the comhbicd goodness of horizontal convergences is the root-mean-square
average of their p!rpendicular and parallel prccisions.

Per the first and :hird of the above 5 equations:

2Z r sin soA ' 02 + .,0s 7 /2

Horizontal Average Precision And Variance Factors

Perpendicular a H 2

Cgionverlnce (0) 0 H/r sin oA

179° 81.0 6561
175- 16.2 263
1650 5.46 29.8
1350 2.00 4.0

.90 1.41 2.0
4V° 2.00 4.0
15* 5.46 29.8
.. 16.2 263
10 81.0 6561

This table compares. tile, goodness of horizontal conveirgences, at any given ground range, in terms of the
.. erage quallity of hri'zontal.-component data. It confirms the 90o optimum. Average horizontal quality Is
somewhot tess affected than vertical quality by a given narrowness of convergence, but it enters twice Into
data quality. Comparing.twice the variance in this table with the variance in the first of the above tables, it
is seen to be equally important to avoid narrowing h arizontal id vertical convergences in the region famPd vetia covr e In the reio fro

45 to 0¶; Over coivergences.-from 450 to 900. the 5wwl oes from being equally important to being

twice as Important,

t! The case of the missile In the plane normal to a 2,station baseline at its midpoint (Figure 18) was
"" picked to simplify the math . in the Interest of physical understanding.

I think we can say our net station configuration isas much a chance proposition as our net number of
stations. Of course, our results reflect our as'erage station.configurations,

The above analytical Approach has demonstrated ample potentdal for improving position-precision by
improving the average goodness of intersection.angles, through increase in sample.size. (Toward a
happy-medium converprnce.) For the z coordinate, the first of the above tables indicates the direct effect
of average convergence.angle on precision. For x and y, the last or the above tables indicates the direct
effect of average conveigence-angle on their average precision.(2 optical stations have I convergence, 3
stations 3, 4 stations 6, etc.).
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The 'readability' mechanism speculated under SUMMARY FOR CINETHEODOLITES would differ
frum the others in this paper in being a degradaton of gains that would otherwise be made. I am Inclined, J
now, to explain our cine precision spectrum as due to readability and/or to increasingly tertical trajectories
in going from left to right in the upper half of Figure 17.

So, 6C = f (Nm), where in = r ( test configuration;

Let's call this mechtanism improvement by overcoming nonoptimum test con figuration,

"3. Another possibility is thut limitations of our least.squares methods are being averaged-uut by
(slicer) number of stations, I have attempted to state what might be called practical theorems about
optfimumn least.squares (Ref. 8). These are given in Figure 20.

I) Statistical optimum (ininmizing variation among indlvldual observations). WSMR's Davis
"methods for clnes and for DOVAP (Ref, 9) are optImum by this criterion. Its 0dle and Bodwell (Ref. 10)
One methods, used to some extent in the past, crippled their own ability to estimate statistically-rue
population-means and population-varlanrces, by determlnisically cutting their sample-sizes In half'
(least-squaring deviations of direction.lInes). Until recently, WSMR's multlstation-radar method determin.
Istically cut its sample-sizes to one-third (by least-squarIng deviations of I-stationr solutions). Our new
multistation.radar method Is optimum by this criterion. Our Davis cine method Is not statistically-optimum
in estimation-of-quality, because it propagates an average angular-precision.

(2) General optimum (transforming residuals from station-variable to missile-variable before
optimizing). Our former Odle and Bodwell cine methods and our recent radar method were optimum by
this criterion, In the sense that they optimized Uneap deviations of 'observations'. This paper suggests that
our Djavis cine method Is not optimum by this criterion, because it optimizes only similarity at the stations -
not rftemil congruence; that is, It treats stations equally regardless of their slant-ranges from the missile and _7

V. of thi convergences of their lines-of.sight with thou of the other stations, It optimizes angular quality of
the stations,- It does not optimize linear-position quality of the missile. (Some work has been done at WSMR

toward a linear least-squares method for cinetheodolites.)

(3) Quality optimum (avoiding the probable loss of accuracy inherent in geometric-averaging of
angular observations). Per right triangles: if 2 azimuth planes both miss a least-squares position solution (in
general they will), their Intersection will miss It farther than either plane (hypotenuse vs perpendiculars),
Ditto for 2 elevation cones. If the azimuth plane and elevation cone of a station both miss a least.squares
solution (in general they will), their Intersection (the missile direction) will miss It farther than either
surface. It follows that the linear errors of ovir former Odle and Bodwell, and recent radar, methods were
probabl!' largtr than those of methods which [mast-square the original observations. So, those methods
probably degraded physical accuracy. Our Davis cine and DOVAP and our new multlstatioui-radar methods
aro optimum by this criterion.

(4) Summary. It seems clear that the criterion of a totally-optimum reduction can be met only
by minimizing the sums-oftsquares of the l&near perpendicularb to; azimuth-planes, elevation-cones,
range-spheres and loop-range-ellipsoIds. That results by such optimum methods will be somewhat different,
more precise, and probably more accurate than by our current methods.
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Mr. Darold Comstock suggested accomplishing the proposed least-squaring of* linear residuals by
multiplying elevation residual by slant-range and azimuth residual by ground-range. This is radius times
(angle in) radians. Algebraically it is a 'weighting'. Geomeif.ally (and physically) it iF a ronve, son. The
subsequent algebra must be changed accordingly. (It is still necessary to propagate these linear standard
deviations into those of the components of the least-squares point.)

It should be apparent that mechanism 3 interacts with mechanism 2 and with differences in slant
range.

Let's sample the potential of linear least-squares for improving precision (and probably accuracy).

The contiguration at the top of Figasre 21 can show',a vertical projection of 2 stations at any point on
thein revpJLctive 'a:imuth" circles about OMW or. a horizontal projection in any direction about point 0. (S'
can also 'flop' 1800), In the graphical representation, next: starting with the angular-LS solution, the
'direction-lIne' is allowed to sw.ing until the linear residuals are equal. Total linear error, summation to point A
'T', is also shown for each tiethuJ. In doing this arithmetic, I actually used the slant range (or ground
range) in the radius.times-radians approximation of arc for perpendicular to projection of El-cone or
Az-plane.

Taking it slowly:

Angular least-.uares yields the (arithmetic) mean of the angular residuals. (in this simple case, it
makes the angular residuals equal.)

Linear least-squares yields the mean of the linear residuals, (In this simple case, it makes the linear
., residua'ls equal.) The angular subtends of the linear residuals are not equal, because their unequal scales of

observation have been taken into account. By Incurring a little bigger error with respect to S', we minimize

the total error. (Optimizing our end-result seems a little unnatural In our range environment.) The
improvement Is 38% in precising 61% in variance. In a redundant case, use of degrees ot' freedom in
calculating these would Increase the differences. Finally, the chatge in the position component would
generally lie between the minus 10.1 and plus 3.0 ft ballparks (of the changes in the linear precisions). On
the averag, I feel it should represent that much improvement in physical accuracy.

If one faces the linear errors behind our angular errors, to the point of a linear LS, the foregoing

dependence of linear error on slant.range nullifies an assumption of 'rigorous' derivations of the
least-squ.,res principle - that the variances are not significantly different, Least-squares still yields the
minimum vector-resultant of the obse., ed errors,

It has been suggested that ttic large linear deviations should be weighted. Perhaps inversely as their
slant-ranges! In effect, angular least-squares does that. This paper suggests wt; may be deceiving ourselves, in
lincar measurement, i we leaot-square angular residuals In order to perform our least-squares with 'noarly
equal' variances. Slant-range is a physical variable - not a .tatistical weight. (The differences which it (&uses
in linear error are not due to random sampling.) Our example indicated which procedure yields the smaller
variance of our end-result. Implicit Inequality of variances In our angular-LS apparently does more harm to
our result than if this inequality were minimized by linear-LS.
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Mr. Comsicv:k's r iA is a very good approximation of the actual "linear-equwalent" of an angular
residuaI (r sin oA that suhtender of"A which is perpendicular to the Elcone or Az-plane).

In Figure 7. you saw our linear precision of a cine vertical component better than the linear precision
of the horizontal components (FURTHER DATA, above). This does not hold true for the corresponding
angular residuals (the angular precision of the vertical runs a bit worse). It appears this anomaly is all due to
the interaction of our angular 'Davis' method with convergence, slant-range, and the azimuth-elevation
system.

As you can see in Figure 22, the vertical subtender of a given angular error increases with elevation
angle, for a given horizontal range. In the top drawing this actually overcompensates the effect of the
difference in slant-range - which is the cause of the difference between angular and linear 'Davis' methods.
This compensative case is the whole story for the v'ertical plane - that half the story for the horizontal plane
wherein we subtend with the normal-to-the-line-between.the-stations, The bottom, additive case, is the
other half of the story for the horizontal plane. What we can win in one direction we more than lose in the
other. The net is an average uncompensation of the equality of x and y. So, our Davis precisions of:: and y
do not approach the optimum of a linear leust-squares.

This appears to explain the better precision of WSMR's vertical component. But, how much of the
effect of number of stations can it account for? It turns out, the left end of the curve ofoUz is slightly

4 steeper relative to its N-to-the-first-power curve than Is the left end of the curve of the composite 0. The
right end is slightly shallower', but the. curves are equally close to N-to-the-first-power, overall. So, the

deficiency of our angular Davis does not appear to be a large part of the particular answer we set out to find
in this paper (a little more on this under mechanism 5),

Let's combine the effects. of slant-range and convergence to evaluate the net Implications for

linear-vs.angular LS and for z vsx, y.

Our first equation under mechanism 2 approximates wzy staton's separate contribution to projected
baseline-perpendicular measures-of-goodness of its measuring-convergence, at any point within-or-between
the baseline-normal planes which pass thiough it and through any other station - regardless of the separate
angles of their projected lines-of-sight with the baseline-normal through the projected object. Repeating this
equation:

r sin o

o1 • sin 0/2

For the top drawing of Figure 22, it turns out that the relationship of the normal subtenders ofoA is
(sliderule calculation):

o160o 1 1.002o)30o
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(The relationship of the corresponding chords which reflect only slant-range is:

CoO° 0.583C30o .

So. in the 0(3 •34? case, the normal compensation of slant-ianp by observing-iangle is virtually perfect.

When the station, are not equidistant, the opposite diagonals of the convergence error-figute are no

longer perpendicular. The third equation under mechanism 2 still approximates the parallel subtenden in

the bottom drawing of Figure 22. It turns out that:

S1130- 74 2.945S 1160o

The chords are unchanged and their relationship may be written:

C 30 o 1,714C6 0 0 ')

Considered with the normal, this gives some feeling for the net uncompenution of slant-range by
observing-angle in the horizontal plane.

For our LS example of Figure 21, it turns out that the normal subtenders of OAis:

aL 0 o A 0.578aL1

(The relationship of the corresponding ch ¶ds which reflect only slant-range, is: h

(C60° = 0,299C15o )

So, in the 60e - 150 case, the normal compensation of slant-range by observing-angle is quite inadequate. (In
the 60o - 45o case, there is over-compensation - by 1.16.)

It appears that if we took slant-range into account in our estriation of position, we could produce
more precise and accurate data (from the same records).

The above analytical approach has demonstrated potential for improving position-precision by
overcoming the deficiency of an angular LS, through increase in sample-size. (Toward a happy-medium
slant-range.)

So.,.° = f (Nm). where m = f ( optimization criterion,

Let's call this mechanism improvement by overcoming nonoptimum choice of variable-to-be.
optimized.
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4. The decrease, through increase in sample-size, of the uncertainty of the directional aspect of
position and position-quality. This is associated with the increasing probability (as we Increase stations) that
the 3-dimensional least-squares optimum will also he the least-squares optimum for each component.

In simpler language, we are talking about the probability (at each data-point) that the 3-way-average
position will also he the avernge position in x, the average position in y, and the average position In z. A

&mall sample that satisfies these 3 conditions seems about as likely as 3-cherries-in-a-row (on a slot T
machine),

An analytical approach to 3-dimensional vs I-dimensional sampling is not within the scope of this
paper. The following table gives some feeling for the extent to which these differ.

NUMBER % LINEAR % SPHERICAL

OF SIGMAS PROBABILITY PROBABILITY')

I 68.3 19.9,
2 95.5 73.9

S3 99,7 97.1

r In connection with verifying that our matrix algebra yields the standard-error of a mean
(ESTIMATION OF PRECISION, above), the standard-deviation and standard-error-of-mean of each set of
linear-component equivalents of angular residuals will be calculated about its own mean (as well as about
the least-squares mean). The differences in the rariances of each component for the two means will sample
the statistical-error in our assumption that the 3-dimensional least-squares optimum is also the least-squares
optimum for each component. The component differences in the two meres will sample the bias of[ measurement of each component relative to measurement of the 3-dimensional quantity (or vice versa).

The above discussion has indicated a potential for better optimii.ing the precision of each component,
through Increase in sample-size. (Toward a happy 3-dimensional medium.)

So. 5. = f (Nm), where ni = f (: 3-dimensional sampling;

Let's call this one improvement by overcoming our inability to optimize eaxh dimension.

5. WSMR's Final Data Reports show how the normal-distribution value of 1,65oat 90% probability
increases for individual standard-deviations at the small numbers of stationsused for a position-estimate. As
tempered by dividing out the corresponding smaller increase of the factor 1.00 at 68.3% probability,
routinely introduced by Data Analysis Directorate ('t' statistic, ESTIMATION OF PRECISION, above).
1-igure 23 lists values of the t' correction at 68.27% probability (Ref. 11).

r[-is paper suggests that our t.,827 correction to individual standaid-deviations should also be divided

out when the degrees-of-freedom are increased by averaging. Tivat the average position-precision should

Those valties were obtained independently by Mr. Gideon Culpepper and by Dr. H. H. Germond.
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then he multiplied by the valtbe Of t.82 or the de grees-o f- freedom in the average (where this value of t is
lot negligibly close to unity).

We are concerned with the qualtity of our data in the form that it is reported to the user. Our basic
unit of position-quality is the popu lati on -estimate of the quality of each component-value. This is properly

* normalized for sample-size and reported to the user in our Final Data Reports.

Our test (or segment) qualities are clearly the average quality of their individual component-values. If
thiese data-values were independent,. normally-distributed, and equivariant, the degrees-of-freedom in the
average-quality of a round (or segment) would be: 2F-3 times the-number-uif-component-quallties-
averaged. Regardless of limitations of the validity of these statistical assumptions, this apparent
degrees- of- freedom in the average is still our best-availuble estimate - incomparably better than using 2N-3
(the average degrees-of-freedom of an individual component-value). Averaging is a normalizing process.

Our various cumulative-average qualities, in which rounds are given equal weight, are practical
approximations of the cumulative-average clality of their individual component-values. The best-available
estimate of their degrees-of-freedom is 29-3 times the-average-num'er-of-component-values-ln-a-round
times the-number-of-rounds-averaged.

Our (equivalent) linear-component deviations are not independent, because we learnt-square observe-
tion al-deviations simultaneously in 3 dimensions. Component variances are further lacking In Independence,
because we propagate thorn from an average angular-variance. Now, effective degrees-of-freedom of these
less than their 2N-3 means that our individual precision estimates are too good. Also, trajectory-
measuiements closely -space d-in-time cannot reasonably be assumed independent. Effective sample-size of

averages less than their number-of-component-values means that our estimated average-precisions are too

It is planned to follow-up Mr. Charles Bicking's suggestion to rms random samples of 25-or-less
position-component sigmnas from a given test; also, from a given series-of-tests - to get around lick of
normality, independence, and homogeneity among our component-values, Then, to compare these and our
regu lar-average sigmas with ASTM control-chart limits for their respective 'sample-sizes' - to sample the
error in our assumption that our data-values have the abo~ve properties, Suggestions: That sample-size which
places a regular-average sigma in the same proportional relationship to Its control-chart limits as the
corresponding random-sample sigma will be its effective sample-size. (if upper and lower limits yield
different values, these may be averaged.) An appropriate set of sample-size conversion-factors for our
average-sigmas can be generated in this manner. Use of effective sample-size will yield valid average-sigmas.
(An existing average may be corrected by dividing by the square-root of its sample-size conversion -factor.)
One minus the ratio of an average-sigma calculated fromn its apparent sample-size to its value calculated
from its effective -ample-size wilt be an estimate of the cujefficient-o~f-linear-correlation of its component-
values. (More simply obtained as one minus the square-root of its conversion -factor.)
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Prof. William Kruskal's Comments on my paper show how negative3
) correlations of observations

increase the precision-response exponent.

The 't' correction normalizes the distributions of samples. In Figure 23. the larger values of t at low

degrees-of-freedom reflect our inability to know the quality represented by one small sample. But, we know

the round- and cumulative.average qualities of our low-degrees-of-freedom data quite well.

The foregoing implies that the WSMR average-prectnion-vs.number-of-stations data in Figures 2 and
4-16 should be divided by the values of t in Figure 23. That the avemge-precision of WSMR's 2.station (I
degree-of-freedom) optical position-data is substantially better than has been realized. 3.-tation (3

degrces-of-freedom), somewhat belter. And, so on. (Similarly for DOVAP.)

On this basis, Figure 24 is the corrected version of Figure 9 (Redeye Contraves-precision vs
number-of-stations and its exponential models). Comparing: Between 2 and 3 stations, our curve went fromr
somewhere among its N' and N' ,2 models to somewhere among its N3 ' and N models. Between 3 and 4
stations, our curve went from N2 to N3 '2 . Between 4 and 5 and 5 and b stations, there wae little change.
So, mechanism 5 accounted for N"'4 between 2 and 3 stations and for N"'/ between 3 and 4 stations. (For
nothing between 5 and 6 and 6 and 7 stations.)

Figure 25 is the correspondingly corrected version of Figure I I (Redeye target Contraves-precision vs
number-of-stations and Its models). Our 'fitted' curve went from being closest to N3 '2 to being closest to N.

It turns out that mechanism 5 changes the upper-half of our Lance DOVAP-precision curve (Figures
15 and 16) from proportionality to N to proportionality to N1 ", The lower-half of the same curve remains

at proportionality to N.

Mechanism 5 leads me to put more weight on the right-half of my comparisons of precision of z and of
x, y, z (Figure 7) with their models. The right-half of the curve of az is slightly shallower relative to its
N-to-the-first power curve than is the right-half of the curve of the composite. This appears to show some
effect ofn mechanism 3 on the power of the precision response (more room for overcoming thehorirontal

plane's net-uncompensation of differences In slant-range).

So. k = f (Nm), where m = r (; ;estimating degrees-of-freedom;

Let's call this one improvement by overcoming nonoptimum estimate of degrees-of-freedom.

6. The open-ended residue of other possible mechanisms of improvement of flight-measurement

precision by increasing stations.

In this paper, we're talking about how fine a tolerance we can meet by increasing (and optimizing)
comparisons in flight.meusurement. Number of possible minimum solutions expresses the number of
possible comparisons of observations on the common basis of oui end-result. For optics:

'Y When one increases the other decreases. This is commonly the case in 3-dilmennlonol LS solutions.

These are usually influenced by measurement in one dimension only at the expense of measurement in
the others.
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rI

NUMBER OF NUMBER OF D, F. OF NUMBER OF U. F. OF
STATIONS OBSERVATIONS OBSERVATIONS SOLUTIONS SOLUTIONS

1/1 1 2 113 -213
1 2 1 213 -113
I½ 3 0 1 0
2 4 I 4 3
21h 5 2 9 or IO 8 tr 9
3 6 3 19 18

etc.

It turned out that replacing number-of-observations by degrees-of-freedom (dcgrees-of-reduvidancy) of
observations in the models of Figure 3 gave curves whose shapes were les- like our operational curves.
Curves based on degrees.of-trecdom (degrees-ol-redundancy) of solutions, and on number-of-solutions.
would be still less so.

"However, number of possible comparisons and number of independent 4 ) comparisons (D.F. of
solutions) may be relevant to learning the degree to which stations are capable of mutual calibration (to
improve system.precision) and of calibrating one another (EFFECT ON PHYSICAL ACCURACY, below).

* Figure 26 shows the frequency-distributions of the squares of the precisions which were sorted by
number-of-stations in Figure 2. It appears that correlation of other determinants of position-quality with
number-of-observations clearly ttn-esponds to contraction of extended frequency-distributions of variance

* through increasing5 ) degrees-of-freedom chi-squared (or less-skewed normal) distributions, as number-of-
stations increases. This change of shape is an ef/ct, not a cause.

"Figure 27 summarimes the five clear-cut mechanisms of this paper, plus its open-ended 'catchall', My
present guess is that the orde, of descending (but real) magnitude of the effects of the first five mechanisms

Is: 2;I; 5;tie between 3 and4.

RATING CONFIGURATIONS OR STATIONS, Suggested procedure:

I. Generate a more-complete version of the 1st and 3rd columns of the first table under mechanism
"2, above. Also, a more complete version of the 1st column and of twice the 3rd column of the third table

under mechanism 2. This is properly dune with a trig. table and a sliue-rule.

2. On a reproduction of a map or scale-drawing of a given (or proposed) configuration, draw all
possible sides and diagonals. (A diagonal can be external.) E'sltiate, and "x', the contfiguration's
center-of-gravity on the basis of visual judgment - aided somewhat by little-circles around all intersections
of its diagonals. The configuration should be chosen so the nominal trajectory will pass near its

center-of-gravity.

4) In the sense of affording a choice.

s) But effectively very low.
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3. For some given (or proposed) altitude above this C.G. - or above the nearest point to it on the
nominal trajectory approximate the projected vertical convergence for each possible (2-station) baseline
as;

baseline
2 (altitude)

where each baseline is measured graphically. The altitude will generally be that of the nominal trajectory at
the midpoint of this planned segment.

4. Look up in the first table, list. and add the variances of these vertical convergences.

5. Approximate the projected horizontal convergence for each posihle baseline as:

0 = 2 arc tan baseline
2 (perpendicular d-itance)

where its i distance is measured graphically from the C,G. - or, better, from the nearest-point-to-it under
the nominal trajectory. Or, preferably, read these horizon tal-convergences with a protractor. (Using the
nearest-poin t' includes the nearness of the configuration's C.G, to the trajectory In the rating.)

6. Look up in the second table, list, and add the double.variances of these horizontalconvergences,

7. Combine totals from steps 4 and 6.

8. For a given number of stations, pick the configuration with the smallest total variance.

9. In adding a station to a given configuration, pick the station for which the sum of Its
convergence-variances (with all the others) Is the smallest,

the
10. In deleting a station, drop the on Isu. d whose convorgence-variances is the biggest.

The above proximate method should work fairly well, because of the big variances of bad
intersections, It is valid for optics and radar. Possible refinements include:

(I) Finding the true C.G, by graphical or analytical methods.

(2) Multiplying each vertical-convergence variance by the square of Its projected slant-range:

1`2  
(altitude) 2
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A itdit iwl~ii ,lyaiiigc It ~ vdiiL~-i~~ ,, hidtiw by th e squire of its projc~ztcd jzrournd-rarngc:

r 2 bawInc) + i CdistanCC) 2

(The latter tmay also he ohtained by averaging the graphical distances from the ends of the baseline to the
(Ci.C or to the nearest-point.)

Thc two tables described under step I are opsiniumfigures-oftnu'rit of the various convergence-angles.
As such they are suitable fro general use. The overall measoring-effectiveness of most actual convergences
will fall short of their projecied-equal-haseline optima. Blut. losses in going to unequal slant-ranges and to
convergences-external-to-the baseline should be reflected well enough for ordinary purposes through the
badness of such converge nces.

* ~COMPONENTS OF C0$ VARIANCE (GDOP MADE EASY). *Geometric dIiutlon of precision' most
7 usefully refers to the geomehic componenhs of posItion-measurement variance. Somewhat less definitively:

.. the magnitude of the position errors caused by random measurement errors .. depends on the
particular parameters measured, the measurement system, location of the measuring equipment and the
location of the missile with respect to the equipment. Variation of the effect of random errors is measured
by a quantity definod as the Geometrical Dilution of Precisiotn (GDOP).' (Ref. 12).

- From MECHANISM 2, above, our equations for the vertical and horizontal projections of
linear-measurement variance are:

r 2 sin' 0a
V sin 2 0/2

2 r2  in2  A ( sin" 10/2 + 0 2  /)

These apply when the missile is in the plane normal to a 2-optical-station baseline at its midpoint. The first
equation also applies to any optical station's separate contrihution at any poitnt within-or-between the
baseline-normal planes which pass through it and through any other statiotn - regardless of the separate
angles of their projected lines-of-sight with the baseline-normal through the projected object These
equations also serve fairly well for radar under these conditions.

G2and 2o,,' are the vertical and horizontal compotnents of position-measu ring variance under the
condit'ons described.

sin' A is the inst rument-component of hoth vertical antI horitzontal position-measuring covuriance,
under these conditions. The remainders of' the right-hand sides of the above equations are the
geometric-components of vertical and horizontal position-tocasuritig covariatnce (under the conditions
described). r2 is the 'scale' subcomponent of the geometric-components of both vcrticai and horizonital
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posilion-rncasuring covariance. ýSI202 arid the parenthetic trig, expression are the 'configuration'
s~ubcomponents of the geometric-measurtng covariance. The latter are, then, simple trig.-functioni of
convergenice-angle. (The square roots of all the above are the 'components' of position -measuring precision
or c'opre'cisrion.)I Our Davis cinec method does not optimize the geornetric -comport cnts of position-meamire-
ment co1'uriance.

For a Utv'n instrumniontpre.lsion, tihc above 2 equations are the vertical and horizontal 'GDOP`
etlu-tion-ý for these conditions. They are a bridge between par tial-differeritial equations, their matrix
reptesen'i - ion. and nonspecialists,- for the 2-station optimoni (baseline-midpoint) set.

REDUNDANT PRECISION OF NONREDUNDANT SOLUTIONS. It is operationally necessary to
compare tire qu~aity of nonredundarsi solutions for missile-position with the quality otf redundant solutions.
(Lxamples oif roioredundant solutions are: I -statiion radir. i~-statiioh optics, and 3-station DOVAP.)

Thei rýncertainty of a nonredundant (zero-dcgre~es-of-fre'edorn) solution lis not a problem Ii one has
SuTificient Ihfo on tHe statistical pop.sutn 'f which, the solution 'i's a, simpld (of size one) -or on
Comiparable populations.

Tlie, commonest, example of di nonredunsdant sp~ition is. a singlieobservatdnj."of a oii'tdmensional
' quantity. The concept, of the standard deviation of (single) observations is the .best-6~own of all-precision
conclepts. It is, of course, the characteristic statistical uncertainty of a single observation.

Usually, the parameters of thii population-of-observations are estim -t&ed from a simple of (several)
obsivrvations. The precision of the sample-mean is then Oiven by the relationship:

where 0.Is the estimate of the srandlarnt-deviation-ol-obser~varions, and n Is the sampic size (Ref. 4).

If only the~ precision of the mean olf a given nurnler of someones observations (of a one-dimensioinal
quantl.~y) is avallabli', it is rou~tine to,' use this equation to cgiculate the uncertainty of a single
(lion redii tdant1) 6bservatloiiý

In llight-measurernant terms, the above equation takes the, form of equation (5) of our Figure 3. Or its
woriking form ..equation (I ) of the same figure. Empirical generalization oC the latter may he written:

Pc Nt

Arid, we have found that we can determline. by trial-and-error, a power of the ratio of numbers of stations
which makes this equation closely fit a segment of a given plot of average -precis ion vs number-of-stations.
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From the foregoing, this relationship for I and 2 degrees-of-freedom position-data can clearly be used
to calculate the average component-precision of the cormsponding zero-degrees-of-freedom (nonredundant)
solution. As our reductions are presenty c;arried out, this means using 2- and 3-station precisions of radar or
optics or 4- and 5-station precisions of DOVAP. (3-station optics is actually 3 degrees-of-freedom and
3-station radar is 6.) The result will he as representative as the I and 2 (or 3) degrees-of-freedom data. The
solution of the above equation for the exponent reduces to:

N
m = log log _

N 2

which can be carried out to the degree-of-fineness desired (three digits are ample). The value of m for I thru
2 dcgrees-of-freedom is. of c:ursc, used in the previous equation with the I degree-of-freedom data to
calculate the zero-degrees-of-freedom precision. If the I degree-of-freedom data arm limited to a particular
combination of stations, the result will be average for those stations - slightly influenced by the makeup of
the second (or th'd) degree-of-freedom,

i If one desires to calculate average x. y, and z precisions of nonredundant solutions, the above may be
carried out sppareay for average x, aveiage y, and average z precisiqns.

If one desires to calculate,•ver.age precisions of the observations of azimuth, etc. in a nonredundailt

,oleation, the above may be'e dried out separately for average azimuth, etc. residuals from I and 2
degrees-of.freedom solutions. (Preliminary indications are that, in our process, time.remd deviations of an
observational parameter are notindependent of number-of-stations.)

If one desires to calculate average component-precisions, or x, etc. precisions, or azimuth, etc.
preciions of a particular nonredundant solution, the above may be carried but separately for average
compontent residuals, average x, etc. residuals, or average azimuth, etc. residuals of that particular
nonredundant soluton, from I anid 2 degrees-of-freedom solutions. These precisions will of'course be

somewhat influenced"b' the makeupof the first (and even second) added degreeb-of-freedom,

Combining x, y, and z preclsions of notredtindant solutions calculated by Any of the above, as an rms,

then comparing with the aimilarly-calculated corresponding average component precision can serve to check
the coherent execution of the methods. (When desired coherence is not attained, the best result is the rms
of the two.)

The foregoing applies equally well to nontedundant solutions for attitude, or for any other measured

minile-flight variable.

The above method is empirical only to the degree that improvement of the particular precision by

Increasing stations exceeds the purely repetitive (statistical) amount.

So, there are no conceptual difficulties - physical or statistical - in calculating the average-precision of

nonredundant solutions on the same (WSMR standard) basis as the average-precision of redundant
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solutions. 'The former maybhe calculated from the latter, for the same or comparable measuring situations.
Where there i% oveilap. the result miay hc used iii quality-control of the nun-redundant solutions. Where
redundant precisions from comparable current measuring situations must he used, the result is still a basis
for stating non redo ndant capability.

GEOMETRICAL STATISTICS. Geometry is used here in its plane, solid, end mensuration senses5.

I am inclined to consider geometrical statistics a boundary-discipline of getimetry and numerical
statistics. Our concern here is with the statistics of geometry (not with the geometry of statistics).

Itegardless of terminology, our subject ipiwluk'.s the fol~lowing elements:

I. Individual measurement.% of' oliject-pusition del'inc geometric surfaces in space. (Or g.-ometric
curves in the plane of' object anid ubscm or.) lire particulars of' these for a station are its own coordinate
system. The particulars of' thsese for a system are its reduction geometry. In general, 3 Individual
measuremnents uf' magnitude or direction determin~e a space-position". The aA of our Davis cine method Is
a parameter of an ertor-ellipsoid which is definable only In -terms of the particular measurement-
configuration. This paper suggests our use or an average angular precision evades the Issue of how the .1
degrees of freedom used by the LS determination of a partriular 3.dilmonsional.'Cartesian position are
effectfively distributed between azimuth and elevation; and, hence, how they should be distributed for
estimatinp the separate qffectie precisions of uv.imuth aind elevation (which would be mora useful). This Is
a questioin of measuring the relative degree to which x is determined from azimuth and from elevation;
ditto for y. (x competes with x and y for elevation. We can consider it subtracts I degree-of-freedom from
whati they leave.) Biecaiuse oif the smaller separate sample-sizes, and because of the physical imbaance of
3-dimensional dcgrees-uf-freedom between azimuth and clovatlonO), It may be concluded our averagle.
angular precision makes our separate angular measurements look a little better and a lot more alike than
they are.

It Is suggested that, In eilaluatdngq effecfive azinmuth and elevation precisions, woii would apply their
seprate 't' correctionsi. And, that one would bypass or divide out maid corrections for qualfty-controh
averages of these separate precisions, Perhaps the method of generating 't' tables will work for a fraction of
one degree-of-freedoml (And for fractional Interpolation,)

The above suggestion differg from present practice in 4 ways; The problem of determining the separate
effec~tive degree s-of-freedom of azimuth and elevation QC..averaging of estimates of station-quality which
svouid he based on degree s-ol. freedom ; estimating sepbrate effect i ve-proclIsion s of azimuth and elevation for
rae/i data-point; the, prohlems oif propagating these precisions iof azimuth anid elevation Iiito effective-
precision of the x-component and effective-procision o' thie y-c-imponent, and of this elevation precision
into etffetive-precision of' the t-cornponent. It may also he eon-luded ourf average-angular precision -as far
ils it goes . makes our 3~ precisions of linear-measurement look a little better anw a lot more alike than they
are.

iiiniuths alonL cannot determinie the vertical coordinate. Although it is not v%4del ' realiead, elevation
residuals have x and y componeLnts as well as z. (At hight elevation-ainglos, they are mostl * x and/or yl) Of
course (in the physical sense that is relevant here), azimuth residuals have only x and y cosmponents.
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isi. I'd pt *I Ltuiiiiiit !x A i.. 2~:~ ~ u one !,,;h af:ueround, reduced x 2-

3, : 4 Ai. 1011~i.1111 D' 1,'0 In'rt vc simid aod .''/atijur a cfiunetileo-pruccdirc 'S needed.

Suggested appfr~w/ It t ealtva' 11"jl'' \, tileodsi& tii azimutht and tii iiievann,iiii ditto for y. (And ito

hiow they di vidce Ur p a/i no 'i.) ( a luen t WIa ii cal raIii p reit ins of azi mut U, iid elevma ol ha sed on N -312
hy I he ms of Lepartale .nu( It tait if I e sig n pia int ;en t wit epoemtit' titcle I-S-aouli g ly lar oultu re mn I

itgr hy~ th ie dms ofrO partiaIC cria iat ives )'te xi ont i nefit with2 resec ifi i t)1111 its se l-olu ijig ~iiicay ur ti plyin
the riot' of file variance of tirsei x-i~tpaiicia proipaigatedf fritri L, innt toIi the sni oif' the variances of tile

x-'.-omponciit from a.' intiiii and from elcv,ition is tile fractional dlepentdence o1 x oil alion ith. Oine minus

that is its tiactimnal depenldenice on elesviiiil. Ditto ior y I I'lie ratio of tire varialimc of the x.cotttpouiieit

Frmaiiinuth, to the ',um ol tht ie Varitinccs oftit C X- and V-Co'nponcnts from azimuth is the x-friietion of
azimuth. One mnoius (lant is; its y-fraciion.) N minits [lie f'iact01, lonaQl pltdM1CVS of' K and Y On alimtnIth E; the
dCgi'eC%-ot-frCCem~lin to usc it iccatctikiijro !it, etlccnv'Ž.protsiir; (if ai~itiutli. jN - I I irinus tire rautinatal

lpati titcc x and v oii elcvmihati ih tile Iogr-2e% wt reetloit - ose int roceatilioiiig Iliv pecisioii Of
elevation. Iterate propagation of' thesti revised sigrias into x- anid y. coimpoinents a tv many timos as
neccssary. (One itaration may suffice.) iEffectivc-sigrna of thle x.-eimponcrif is the rrns of its final
effeedve-sigmas from azimuth and from clevtition. D~ittot f'or efl'ectivu-sigmu of the y-eomponcttt. Propagate
filital effective-Eigmia of elevation into tile ',-Component, fto get the latter's effectii'e-signia.

One of, tile operations of germettelical sstiistics. lienl, is trI N11forraLi oil of precisiian indices from
inst ruineti 112oord inate s to data-Qoord in ales. Our D~avis cite mot iod iscconplisties this, in its wily,
smu tancously with (multi variate) stataisi cal t ranisfor matilof' (it' le prce ki on in dices fromt observatioils it)S

data. Tfhis paper NU ggestsý that i ts Proceduore, ibhove, would do the saitie thiing miucht more validly,

The fisiegoing suggcstion would alit ap1ply ti lthe 10tillyiiptiItiunt liticar leait-squ tiares proaposed under
ME~CHANISM 3, above, 'rThe comipuitirng would simplify, sincle pi'Opagatioais would he only (multivaria Ic)
statistical transfo c-ma loftis of'pre isciti~ ittsices f rotti hbservat iois Lto data.

A second efenmei't:

2. Geometric oonvetgence, llThis element was treated tinder: MVL('FANfSMS 2, 3ý RATING
CONFIGURATIONS OR S'[ATiONS; and ('OMliiONVIN'S CV COVARIANCE (GLOP MAD)E EASY),
These effectively disinibcil GDOPl from its mnat rices, in l'tirms Ihfat tire imoe easil ' N, iidlrstoitd ainid used.
Thtin was done hy graphticalt representtatiot andf elcnseittaty tr'igoiotmetry. Jetfrcys I Rof. 13) has shtowii that
(the) trig, functioins ttre lawcs of (plik'sical ) tolenslirtition.i;not merely osathectnatictil defintsiiins.

It was; feaeihl In, it tis Paper. to kleil withii(tie pitifect.ei lapidaar oivie11 f' the titnear intersectlions
of the- two atinuala ohsurvalt;iios' 1cra /I It 't) wiptic:il (mr r~tldirj 5ftitioits. lwiu iipiproisi' is certaitily oite of
the practicail optimiums. I-ron; MI ( IIANtSI i. dehn- io'c ilnitafiouiislv wifl lth ith ulttple spatial
convergatice uit Il pii-iia tsrvio ls :ic it v t t ýtaliitti-l mlnh iittaiitlt takn0sai
wotild he the statistical niid uCii-LItv1 opt-imumt (criceria I 3atid ; Wi i'igue1 210). 111 ligjtiic; IS CA(an lie ortl.
o~r Os. 1:Tu le valu esof tile hse rmay d i 1'let, h ut thIIe viinije of cact tItrt hui' ftc I -;i Ii c tot h)iiihi staIlitons.
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A Ilird doetow

3 ' ie orcin) Ji Fal ly-optitrnom min oavui'fret-nct a nralysis optIimizeCs the geoLi/flirfl coamponenlts of

poitiirl-rneasuirenient cov:rralrcc, as well x. iltire instrumenlt componlents. Taking slant-range into account
I ransf ,orniirig residuals front station-earrable to oiissile-variahle - before least-squaring was treated under
Nil (IANISM .1. Takinig convergentce-angle ililo account before least -squaring is treated in this paper only

tothe point of statisan-selectioir (RATING; CONFIGIURATIONS OR STATIONS).

4. (Theorem) '*rho msaltidimensiniial-optirnum position is generally not optimum for any single
dimension. Thjii element was treated unrdier MECH'IANISM 4.

As lmngt as we deal wiith veciur in ternis of their conlptnems., it is valid to ch.-racterize precisionl hy
thFrree I -dinienrsionrii frecqo icy di so hoibui,1s. IRu, if Ic deaIs Willi a 3-dimnension a vectIor aw; ail entity (e.g.,

til voctor ana~lysis). the stiuidaid deviationuof ii s value tclijality of itic vector) is:'

0V = 'A x2 X2 + 0 y~ 0,2 g

where As , M atid P are the vector's respective direction cosines. Our t.87corrections to individual
conipotiiet-sigmnis should he divided Out beforehand.8) This formula applies to any perforniance variable.
For thre case where u. = y a 02,' the direction cosines drop taut. For the position vector, aV is how
well We know thre distance of' the missile from its launcher reference. It's the precision of the radius vector
(r) of sphrericail cirordinrates. (So, the above is one of' tile 3 guoinctrical-statistics formulas required to
Fransfoirti prccision Indices from tiartcsiiin coordinates to sphc'ri cc?.) For the velocity or acceletation vector,

GVis (corrvspondingly) the precision of' tife mrissile's radial-velocity ur radial -ace ele ratilon. The formula
without the direction-cirsines is also the vector representutioll of 3-dlmiensionai precision (vector of' the
quality).

Thou gh n1) ot comttonly cot nidr redn a geoiasetric dimensliron, osvercom ing effective finte-mneasumrment
differences urnoig .station-srhservatioiis -toward a liappy-itiediuni difference -is part of our open-ended

MECHI AN ISM 0. 6, his is liiit lintited to di ffe ran ces in the tinie-sigirl bi ut itrcludes all dlifferetnces itt
sytrelronir iation tlrroughiouithFle data-process (Ref'. 0). It shiows up its an tinhalativd contribution to

prrsitiril-tneasuioeisnit variance (miaxitrrnr in thre directionti~ flie velocity-vector - zeCro, normal tr) that).

5. (Findinig) Ini tlighi-measurenirter, corvcs nif average precision vs number-of-observing-stations may
he fitted by groc'ratliurng. itl a varhihabl degreu lire exponerntial dependence of the standard-eiror-of-the-

mca-ir-airorrrt-istnilutotiun wrtirple-siz'e. Ilire exponeni f/n imipriovemrent of posiiioo-precisiotr by
incre,oirrn stain -illo irIe as irticl as 4 timles that of, thI% Classica! relationshrip (if numerical statistics. 12
prulects in which tire iniprovrneitni was S times are rlistogairdcd. because data were somewhat limited.)

Ini this senrse. at least. georiretrical siaristicN is a gerneraliztrirof tit'nrmerical statrstics. Int addition to
iiurn erica I cotlvergwtlee. filie ahovc! exponren t ial de peiiden ce of prurcisi ii respronse is clearly a function of

h Uis Vesluatithi was dlerived for Fire write, by %r. W. F. Mintitack. Ii elicvka a classical source (Ref. 15).

Sit) ror triiiai i/e thre 3 -dinsensionial Aignia sholusd bie mii iF plied Fr v a 3 -di tileIision a 't'. Tlkese Cwt be deduced,

(iii either thfe genreral or eqijivar iairr case. f'roit ReFerence 10.



geometreirc contvergenrce ( the crnigtura tion %uiomh'oponent of Ohe geometric. comoponlentit' o position-
mecasuring covariance): is, a ppa re ntly ;i htiction ol' sanit-i ange filte scale suhcomponenot of the geometric
componcnt)ý and is probably a lunction of multidimiensional sJotpfing. It mat' also de'pend to somec extent
on precision- indices being variant under coordinaie-transfonrnation -*and on time-measurement.

A negative view might iw hiat classical numerical statistics is not applicahle it) flight-measurement,
hecause observations and component-values of flight-data lack normality, independence, and linogni~iteity.

This paper su ggc sts that (lie trartd 00-er rot conice'pt of' nume rical statistics is no t a dequate hi' itsell tOr

flight-measurement. Thai, besides more concern with hle physicail atid geomietrical meanings of our math.
more tormal development tstthe bounidary-discipline of geometrical statistics might be Utlpfu I.

The findings oft his paperl hic-ah'ii lead to the followling statistical liviresles'.

(1) We should average our precisions in whatever exponential form is proportional to
simple-size "or that vehicle. This calls for an averuging-spectruns ranging from averaging Vat-lances to
averaging square-rotits of stanilard-deviations.

(2) Our results call for ant optimizing spectrum ranging from least-squares to least-squalre-roots.

We aren't doing these heretical things because: it's inconvenient; we want to maintain oar bridge to
standard methodology ; it's desirable for a data-quali ty intdex to lie sensitive to bad data (as varian ce 1s).

Loch of' the foregoing elemtents of geometrical stattistics Is also relevantt ito station and sysfem
calibration and residual bias, and their. statistical uncertaitties, (Sec EFrFEC'I'ON PHIYSIC'AL ACCUJRACY,
below,)

EFFECT ON PRECISIONS OF VELOCITY AND ACCELERATIlON. Figure 28 shows average
precision of velocity of Chaparral missile (Feb - Nov '67) vs average tnumber of Contiravei stations
computed. Its hyperbolic models show It closest to improvement of' precision in direct proportion ol'
number-of-stations.

Over b sets of Contraves and one set oil)OVAP data, thei,ý was a slip/it tendency for velocity precision
to depart from proportionality to N in the direction of'N 5 

12 .Also, a slight tenidency tor the curves ito he
straighter than the hypei holic model.

Figure 29 shows average precision of acc-lehrarionof ii edrye target (Mar - May '67) vs average riutihei
of Contiraves stations compu ted - The a ppcr htalt of the cu rye was cl osest it ) inipoptvenit n t itt p roportini Otto

N; the lower half closest to Ni "- Overall, it was a tossup bet weoti tho~se two.

Over 6 sets oif' Contrives anid one set of I)OVAI4 data. accelerationt precision w-' evenly divided
between proportion ei ty ito N and proportion ality t4) N".' More thatn hatlf the curves tended tot he
straighter thin their closest hyperbolic model. 'The tendency f4)r aserage quoality to he lit fuenced by a had
round increased in going from position ito velocity to acceleration.
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I!;;panJto look Ai the~ ,,i,,VV I tiaiiuii1iiiP ior .spooilicd position, which occurs in our process

Propagating ili elti tino on precisioni-of-in easu red-po~sitjion through; time series,

ptflIý titolital fit. lack-of-lfit, Ist derivative. and 2nid derivative is not at tempted in this paper. It is reasonable
that thle precision of' I posittoal time-scries reflects to a conisiderable degree the precision of its values. (And,

Sonic of ii e vari abili ty of' ou1 oh1sc r tiaoi s is 'shor i-p cr1od', so their numerical convergen ce
(MIJ1.IANISM 1, ahove) should he retilcced to somic extent in time-varying precisionis. The difference
ho~twcett 3-ditirici sionair and ]-*dimnsionalaar sam pling ( M CITHA NI SM 4) should also hiave a 'short -peri od'
colinponenti. Mcclainisini 2 and 3 are tii-~~i ut not clearly short-period.

The at' cortL'cion ito position-ipro'cisitin (MfH I IANIS M 5) does not enter tunie-varying precisions. These
titart over' with the time-series 'ohservaatiotis' of position. (t corrections have not been applied to our

j, fire-varying precisions,) C'alcu lating effective pus) tion-cumpon~ iii precisionsl from effoctive-p recisions of J
~aziitith anti elevation (under element I of cuiomlrRlCAL. ST'ATISTICS) would not enter time-varying
precisioans.

Effective tinie-atd-sytc. differences amiong sitit ioa-observations (under element 4 of GEOMETRICAL
STATISTIC'S) should have a short-period component. Overcoming this through Increase in sample-size
toward a happy-mnediumn difference would he doubly reflected in actual precisions of velocity and
acceleration. (Indirectly through space-mneasuremnent and directly through time-measurement) We are not
yet propagating tiime-precision through the dealva livesý

Our smoothing interval is usually coaastant for a project. Number-of-station.; should influence the
rdatiantship~s between smaoa dii g-inteaval and tune-varying precisions.

EFFECT ON PHYSICAL ACCURACY. 'rite oflect of' number of observing gtations tin flight
metisatremeitt accu racy (bias) is a Nu hjec t lrfuort Airte lilvost iga iui.ot

I am willing to poastulate a probabilistic improvement of' physical accuracy by increasinig stations in
fligh-ir -vasttroetlet - becau se we thereby inicrease flie proabhaility ofmit utua compensationt of station biases
iii both iagoit iii(e adtil1 droctiota

Churchman (Ref. 17) itutces tiat 'thle true value is tii t at ran dosi vartate, that it is a unique element
aimong the real numbers, atnd athat tile probhability of' its lying inan win'iiterval is hlerclfore either exactly aoti
(tr exactly zcro.' H owever. such absolu te kitowledlge is. niýa granted its Our e-stimates of physwittly-true
values - or oft hi as tle re front - ire sit ntuin variates. (in tht, itense ,hti pihysi cal itift is uiniavoi dablIy
p ia ha hilistic.ý

System precistion (data precisioai) is a c1liective mieasutre iff the munial ~;alihrution of it stationis in
space and titme. System biasa (data accuracy) is the net tiancoinpetisated) sum of its station biases (in space
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an"' time), On tihe average, improvmg I... !hit rIifvidwiil a rm th nl orui Svoin (-Hlihrrtionq (statinon accurncy and

system IJntcishon) should imptove the oti cilibhation (system accuracy) mon' than would individual
calibrations alone.

MECHANISM 2 treated the error in Figure 18 as a dispersion (or precision) index. Let's consider it a
discrete bias. Then, in Figure 10b, il tile discrete angular errors happcii to have opposite signs, only the
baseline.normal diagonal of the smaller almost-diamond in Fig. 18 exists. From MECHANISM 2:

I sill A,,,
A 1 A

sin 0/2

And, the li)st two coiurnms illf the first table under MLCI(IANISM 2 also compare the accuracy of
perpendicular convergences tor either horzontal or vertical planes. In Fig. 30a, if the discrete angular errors
happen to have thW samie si", onily the hfelinc-parillel diagonal of ilhe smaller almost-diamond in Fig. 1I
exis's, From MECHANISM 2:

r sin A

cos 0/2

This equation il meaningful oniy for tile horizontal plane,

The following table averages the accuracies of the vertical convergences for tile (even) chrinces that
statian biases will have the same otr Opposite signsb):

Vertical Average A vc•naom Factors

. VERTICAL I
CONVERGENCE (0) x sin 0/2 )

.I80 0.50
1350 0.54

900 0.71

45' 131
150 3,84

50 11.5
I . 57.2

The above values are half those of the first tahle under MECIIHANISM 2. (When siguts are opposite, there is
no net bias.) So, vertical convergences rakiA the same fI' average-accuracy a I'mr average.precision, hut the

effect of a given departure fronm the 18M' optimnum is only hall'as great.

) Fven chance, because - to the extent bias of a given-type instrument consistentlv has the same sign it is

more likely to be adjusted or corrected fu~r.
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I

1 irc l iIowing table averages 01e accuracies ot the Ihorizontal conveigences for the (even) chances that
station h•se•I will have tire same or opposite signs. (In each case, a zero enters for the other diagonal,)

Horizontal Average Accuracy Factors

PERPENDICULAR '
(ONVERGENCE (0) ,4 sin 0/2

I7N 28.9
175' 6.0
165° 2.17

I135 0.92
w,() 0.7 1
45' 0.92

Is1 2.17
0b,0

1 28.9

HIorizontal convergcnces rank the same for average-accuracy as for average.procIslon (third table of
Mt('IIANISM 2), hiut the effect ofa given departure rrom the 90o optimum is less thian half as great.

Still, there Is plenty of potential for improving position acrcurarc' by improving the average goodness of
int.rsvction'angles through increase In sample-size. Mechanisms 3 and 4 (Fig. 27), and our time-measure.
nment possibility, also apply to accuracy as well as precision.

SUMMARY. Supplementing the ABSTRACT: WSMR-standard precision f' a measured component.
value reflects the agreement among its statinn-observations it that point in time. We use rms-uverage
precisons for operating ard management control. It was found curves of average precision vs
number-of-olhserving-stations may be fillted by ývnerafizing, the exponential dependence of the standard.
error-of-the-meatsn of a norinal distribution on sample-size, The pre-ision-response of cirnetheodolite
position-data ranged from proportionality to N1 '2 to proportionality to N2 . Five mechanisms seemingly
Involved In this profound effect, plus an open-ended catchall, are summarized In Fig. 27. (My present guess
as to their descending magnitude: 2: 1: 5: tie between 3 and 4.) This investigation has led to
methAIs-improvement suggestions I•ir collection, reductioii, and quality-estimation. A marriage of
geomeiry and statistics has been partly consummated, on simple terms, Previous work on optimum
convergence (Ref. 6) was extended t) qufanttative evaluation of the precision and accuracy ofeaU linear
converge nci..-angles - for mea.suing the vertical and horizontorl components of space-positiuon. it appears that
if we inc,.rpi)rated slant.range ahead of our least-squwres estimate of' position, we would produce more
precis. .io d actcurale dLil a. (hoph/cit inequality of' variances in angula least-squares apparently does more
hrmui than if this inequality were minimized hy linear least 'squares.) A sufficient reason for usilng
least-squares: I-yen when W1 thie rigorous assumptions o1' the Least-Squares Principle are violated.
least-squares still yields ihe minimum vector-resultant of' the observed errors. A method was given for
evaluating our assumptions that propagating vatiance into a least-squares positioncoumponent yields the
standard-error of a mean, and that a 3-dimensional optimum is optimum for each component. It was
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sggested the t' uitt•L;tiu. Lu indivicdua positiuo-precisions should be removed befure averaging these. An
approach to evaluating the effective sample-size of nut average-precisions has been described. The procedure
suggested for rating measuring-ability of test-configurations can be set up with trig.-table and slide-rule, and
operated with an adding-machine. Coinptnents-of-position-measuring-co)(variance and GDOP (geometrical-
dilution-ol-precision) were presented in forms easily understood and used. Some elements of the
boundary-discipline of geometrical statistics have been discussed. A way was suggested of taking the
physical imbalance of degrees-of-freedom between azimuth and elevation into account - to calculate more
valid angular and linear-component precisions. Relationships betwecn component-quality and vector-quality
were touched on. The entire paper is relevant to geodesy as well as flight-measurement.
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FIGURE 27

MECHANISMS OF IMPROVEMENT OF
FLIGHT MEASUREMENT PRECISION

BY INCREASING STATIONS

I. BY OVERCOMING SMALL SAMPLE-SIZE.

2. BY OVERCOMING NONOPTIMUM=T CONFIGURATION.

"3. BY OVERCOMING NONOPTIMUM CHOICE OF VARIABLE TO BE
N:.i! OPTIMIZED.

4. BY OVERCOMING OUR INABILITY TO OPTIMIZE E COORDINATE.

5. BY OVERCOMING NONOPTIMUM ESTIMATE OF DEGREES-OF-FREEDOM.

6. BY OVERCOMING ERRORS INCURRED IN APPLYING STATISTICS TO
FLIGHT-MEASUREMENT.
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Figure 30a SOMe SIgn

or

Figure 30b Opposite signs
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COuMzN•EIS uON rKLINIAIir VIr OT rKs-U) nAINUIN

William Kruskal

Departnent of Statistics
The University of Chicago

Chicago, Illinois

You will recall that, when we met at the Edgewood Arsenal conference, I expressed regret that I could
not attend the session at which you presented your problem, and I added that I would look at the materials
you had sent to me.

Not everything in those materials is clear to me, but I take it that your major worry is that the
empirically determined standard deviations of position determinations, as a function of number of stations,
N, decreases faster when N grows than the N'9 rate that would be expected under standard circumstances.
You apparently have evidence that the rate is more like N -3

The first thought that comes to mind i, that the standard N0' rate depends squarely on the
assumption that the observations are uncorrelated and have equal variances. In particular, if the
observations have equal variances but negtive correlations, then the standard deviation of the sample mean
Is kn than that ixpected under the standard assumptions.

w Let me make this specific. Suppose, for simplicity, that we are dealing with N random variables, all

with variance e2 and such that any pair of variables has correlation p. It is a standard fact that p cannot be
less than - 1/(N1).,

Under these circumstances, the standard deviation of X (the average of X) is

;;N=

o/.ql +(N-1) p

Suppose that

c - N2

N2  (N-I)

for some positive constant c. Then, substituting back, we would have for the standard d-viation of X,

0

It seems to me conceivable that something like the above may be taking place for your radar
measurements. Suppose that a measurement error comes from small changes in the angular orientations of
the object measured. Then the effect of such a small change on one radar station might be nearly linearly
related to the effect on another station, and with a negative slope.
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Of course this is all speculation because I do not understand the meauarement set-up and the data
reduction method. In particular, it would be strange for p to depend strongly on N.

With cinetheodolites, it is hard for me to see offhnd how large neptive correlations could be
effective.

More basically, it is not clear to me how your empirical standard deviations were obtained. Is itpossible that your results are a result of something about that method?
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EVALUATION OF NICKEL-IRON AND NICKEL-ZINC BATTERIES

Martin J. Sulkes
Power Sources Division, Electronics Components Laboratory

USAECOM, Fort Monmouth, N. J.

Most Army cc-.imnr•ication missions requiring secondary batteries 4
are.presently beLig met by the nickel-cadmium (Ni-Cd) system, with4
silver-zinc (Ag-Zn) filling the remainder of the missions that require
low weight. Both of tLise systems contain expensive, limited-supply
materials. Namely, silver at $32/lb. or cadmium at $3.25/lb.

The nickel-iron (Ni-Fe) and nickel-zinc (NI-Zn) systems are
potential low cost replacements for the Ni-Cd and Ag-Zn systems, since
Zn and Fe are less than $0.15/lb. Ni-Fe and Ni-Zn batteries have been
known for many years, however, until the present they have not developed
the energy densities and life of which they are theoretically capable.
For example, iron has a theoretical capacity of 0.98 Ah/gm compared to
0.47 Ah/gm for Cd and approximately 5% higher voltage. However, the 41
Ni-Fe (Edison) cell has low energy density (8 Wh/lb) compared to 12-15
Wh/lb for Ni-Cd. In addition, the Edison cells low temperature and
high rate performance are poor. Its cycle life, however, is excellent.
Since much of the Edison cells' poor performance is due to the iron
electrode, an improved iron such as was developed by GT & E labs could
make this an attractive system.

The nickel-zinc system has had limited cycle life because of
shorting by zinc dendrites and loss of capacity due to zinc electrode
shape change. Energy density has been limited by the need to include
a large excess of zinc. Recent work on Ag-Zn batteries and fundamental
investigations of the zinc electrode have indicated how dendrite forma-
tion could be controlled and zinc shape change reduced. It was, therefore,
estimated that through the use of an improved zinc electrode and the con-
tractor's high energy nickel electrode a battery capable of delivering
up to 30 Wh/lb for 200 or more cycles could be developed. However, a
great deal of investigation of the various interrelated cell construc-
tion factors was required to successfully achieve the desired goals.

The objective of this work, therefore, was to optimize a design for
nickel-zinc and nickel-iron and evaluate such cells in standard line
configuration as possible low cost replacements for existing systems.
A comparison of the discharge curves for an equal weight of all 4
electrochemical systems is shown in Figure 1. Specifically, this
evaluation explored the construction of Ni-Fe and Ni-Zn cells for
various design parameters, and tested them over a variety of rates and
temperatures.

The nickel-iron system was investigated in two, 2 - design
experiments, while the nickel-zinc system was studied in a replicated 2
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experiment. Each experiment had 16 cells. In all cases, the assembly
st cells, electrolyte t1LI and position on various tests were carried
out in random order as determined from a table of random numbers. All
experiments were analyzed by the technique of multiple linear regression.
The calculations were made on a Scientific Data Systems 930 computer
using the Multiple Linear Regression program from the IBM 360 SSP
(Scientific Subroutine Package). Surprisingly, when the calculations
from the first experiment were checked by the Yates method, an error
was discovered in the IBM program. This was then corrected and the
results obtained through manual and computer calculation were then
equal.

The multiple linear regression technique used for data analysis
assumes that the total response; i.e., the faradaic capacity, is a
linear ftinction of the independent variables (factors) being studied.
The general equation is

n
Y;' ¥ b +÷b X1 b X + +bX b + b Kb
Y-1b2 2 n 0 bi i

where Y is the dependent variable (response) and X1 , X2 , . . . aXn,re

the factors in the experimental study. The coefficients bl, b2 . . . bn

(partial regression coefficients) were determined by fitting the response
data to the general equation. Each coefficient then became an effect
value and an indicator of the effect of its factor on the total response,
independent nf the other factors. The sign of the coefficient (±) deter-
mined'the direction of the effect in going from one level to another of

I the factor. The constant bo is the intercept on the Y axis.

The first nickel-iron experiment consisted of 16 cells made with
four variable construction factors each at two levels as bhown in
Figure 2. These calls were given a total of 16 charge-discharge cycles.
Based on the pre-tested capacity of the positive electrodes, it was
expected that these cells would have a nominal capacity of 6Ah in the
normal, positive limiting design. However, when these cells were
cycled, lower than normal capacities were obtained after several cycles.
This low capacity was traced to difficulties in control of the chemical
activation process for the iron electrodes used in these cells. To
eliminate this problem, the next experiments were assembled with iron
electrodes made by a controlled electrochemical activation process.

Despite this setback with the Experiment 1 cells, valuable
experience was gained by the contractor on cell assembly techniques.
Furthermore, the data from cycle one (Figure 3) upon statistical
analysis did demonstrate the dependence of cell capacity upon the
variable factors studied in the experiment. This analysis, shown in
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Figure 4 was run after non-significant interactions were eliminated
from the analysis. The F value of 38.188 indicates that the data fit
the assumed linear relationship. WiLh 9 and 6 degrees of freedom an
F value exceeding 18.69 is significant at the 0.999 probability level.
Since the computed t values are not mutually independent, they could
only be used for ranking the order of importance of the variable factors
and for showing the direction of effect of the variable levels. Thus,
it can be said that variable C (electrolyte concentration) with a computed
t value of 11.544 had the major effect on the cell capacity. The + sign
shows that the high level (31% KOH) of this variable gives more capacity
than the low level (21% KOH); in fact, the 31% KOH yielded 37% more
capacity than the 21% KOH. Figure 5 ranks the variables in order of
importance and shows the preferred variable level. Similar analyses
of data from later cycles of the cells in Experiment 1 gave similar
results, thus strengthening these conclusions. However, it should be
pointed out that each succeeding cycle is not independent of the first
cycle data, since the cell construction is fixed.

Preliminary studies of the dependence of cell capacity on charge
rate and Ah input indicated that higher charge rates (C/2 to C/4 were
more beneficial and more efficient than low charge rates (< C/8). Since

K the cells were positive limiting, this effect is a function of the
positive plate, verifying previous experience with positive-limiting
nickel-iron and nickel-cadmium batteries. Further studies are necessary
to determine optimum charging conditions.

A second, 16 cell nickel-iron experiment was setup in accordance
with the design shown in Figure 6. These cells all contained electro-
chemically activated iron electrodes as opposed to the chemically
activated ones in the first Ni-Fe experiment. Because of the change
in the iron electrodes, it was thought necessary to repeat the two most
significant factors found in experiment 1.

A total of 8 charge-discharge cycles were run in accordance with
the regime given in Figure 7 and analyzed. In the analysis the variable
factors and their first-order interactions were the independent variables,
while the Ah capacity was the dependent variable. In addition, percent
capacity retention in Ah was analyzed by comparing the Ah capacities on
cycle 4 with that obtained on cycle 5 after a 7 day charged stand.
Figure 8 gives the actual effect values of the various factors on the
dependent variable during the eight cycles run.

It is apparent that LiOH content (D), KOH concentration (C) and
the interaction of these two variables have the greatest effect on Ah
capacity, at C/4 rates, with the saturated LiOH better than no LiOH and
31% KOH better than 21% KOH. It is also interesting to note that the
charge retention cycle (- 5) and the high rate cycle C~ 7) disrupted
the relative ranking of effects on subsequent cycles. Also, with respect
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to percentaue Ah charae retention (- 5). the KOH concentration was the
variable with the major contributing effect.

Therefore, on the basis of the two nickel-iron experiments the
following design features were chosen for the optimum Ni-Fe cell
design.

1. Electrolyte Concentration 31% K0H
2. Additive LiOH saturated electrolyte
3. Electrode Geometry End plates are positives
4. Separator Nylon-Cellophane-Nylon
5. Electrode Thickness 0.037"

These factors by no means completely define the system and, there-
fore, additional experiments will have to be run to determine the
influence of such factors as positive to negative-capacity ration;
and quantity of overcharge per cycle which were at fixed levels in
the experiments.

Nickel-zinc Cell Experiments

One experiment was run to date on Ni-Zn cells. The design of
this experiment, shown in Figure 9, contains only 3 variable factors,
each at two levels. Replication was provided since it was known that
zinc systems are more erratic, particularly with regard to cycle life
than the long-lived Ni-FP or Ni-Cd system. Therefore, additional cells
are required to achieve more reliable data analysis and also to provide
for substitute cells in the case of premature failure.

Seven cycles were given to the cells in Ni-Zn experiment 1. The
first cycle analysis is given in Figure 10. An F value exceeding 2.75
is siSnificant at the 0.90 level, and a value exceeding 3.73 is significant
at the 0.95 level. Thus, the fit of the Ni-Zn first cycle data to the
regression curve is only fair. However, if non-significant interactions
are eliminated the fit is greatly improved.

The computed t values indicate that interaction between the zinc
electrode substrate thickness and electrode geometry (AB) is the major'
contributor to the ampere-hour variation observed. Electrode geometry
(B) is the second most important contributor with the 15 negative, 14
positive cells (B+) producing more ampere-hour capacity than the 14
positive cells (B-). This result is to be expected, since the outer
two positive electrodes in the 15 negative cells are probably more
completely utilized and would show as increased capacity in these
positive limiting cells. The zinc electrode substrate thickness (A)
is the third most important variable, and the negative t value shows
that the low level (0.0025 inch thick) is better than the high level
(0.005 inch thick) of this variable. The excess ZnO variable
apparently had little effect on initial Ah capacity. This was
expected as its effect, if any, was more likely to show on cycle life.
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The large interaction effect shown in Figure 11, rvPq,4rP•4
study to explain, since the factor levels should not have been suf-
ficient to produce changes of the magnitude found. However, since the
main effect of this interaction was to reduce the performance below
acceptable level, the cause had to be determined to avoid repeating
it in future designs. Cell teardown analysis determined that all
cells had been constructed so as to be tight. However, with the
thick substrate (A+) and the lower number of negative electrodes
(B-) there was an insufficient amount of compressible zinc to pre-
vent excessive tightness in the cell,,which was responsible for the
significant reduction in cell capacity.

On the second and succeeding test cycles on the Ni-Zn experiment 1
cells, an intermittent internal shorting problem became apparent. No
further Iata is presented, since this shorting problem made statistical
data analysis unraliable. The shorts were particularly evident after
a seven-day charge retention test. Only 6 of the 16 cells showed ap-
preciable charge retention (from 33 to 77 percent). Examination of
the internal structure of the shorted cells indicated that it was
caused by zinc growth at the top edge of the electrode shorting over
to the adjacent positive electrodes. In future experiments, this will
be corrected in three ways: (1) coating the edges of zinc electrodes
with an inert film forming agent; (2) additional separator height
above electrodes; and, (3) less initial electrolyte fill.

Though this initial experiment did very little toward achieving
optimization, it did succeed in pointing out several critical design
parameters that must be considered before satisfactory performance
can be obtained in a high energy density Ni-Zn cell. Two additional
design experiments are planned to evaluate such construction factors
as the negative to positive capacity ratios, the total number of plates
(plate thickness), separator type and number of layers, amount of
amalgamation of the negative, etc. These factors must all be explored
before a Ni-Zn battery meeting the required goals can be fielded.

In Summary: The use of factorial design experiments has greatly
reduced the number 'of cells required for the evaluation of these two
electrochemical systems. This reduction in the number of cells is
particularly important for secondary batteries, since by their nature,
each cell can tie up testing space for many months as it repeatedly
cycles. Several important design factors have been optimized for both
systems though much more work remains.

This work was carried out by General Telephone and Electronics
Laboratories, Inc., under Contract DAAB07-68-C-0102. Complete data
for the experiments reported on, may be found in R & D Technical Report
ECOM-0102-1 by Mr. T. Blickwedel of GI&E Labs issued in September 1968.
The suggestions and assistance of Mr. Joseph Weinstein of the Electronic
Components Laboratory, USAECOM is gratefully acknowledged.
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DESIGN OF EXPERIMENTS AND A STATISTICAL PERFORMANCE MODEL

FOR A RADAR ALTIMETER

Erwin Biser
Avionics Laboratory, U. S. Army Electronics Command

Fort Monmouth, New Jersey

GLOSSARY OF TERMS AND SYMBOLS.

n Number of observations

N(+d) Number of positive deviations

N(-d) Number of negative deviations

H Height observation measured by Honeywell Altimeter,
Model 7091-A (Modified); Test Item 1

H Height observation measured by AN/APN-22 Altimeter;
0 Test Item 2

HR Reference height 'observation measured by RCA Laser
Range-Finder AN/GVS-1 (XE-6)

d H -H
mR m R

d -H -H
oR o HR

d Average deviation of the RCA Laser Range-Finder AN/GVS-l(XE-6) height observations from the Honeywell Altimeter,

Model 7091-A (Modified) height observations
d Average deviation of the RCA Laser Range-Finder AN/GVS-i

(XE-6) height observations from the AN/APN-22 Altimeter
height observations

e Angle of pitch measured by the attitude indicator from the
P vertical (900) as established by the Honeywell Vertical Gyro;

positive angles of pitch indicate the nose of the aircraft is
up; negative angles cf pitch indicate the nose of the aircraft
is down.

e Angle of roll measured by the attitude indicator from the
vertical (900) as established by the Honeywell Vertical Gyro;
positive angles of roll indicate the aircraft rolling to the
right; negative angles of roll indicate the aircraft rolling
to the left.
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P vertical (900) as established by the Honeywell Vertical Gyro

r Average deviation ot the roll angle observntions from the
vertical (900) as established by the Honeywell Vertical Gyrt

s Sample standard error of the deviationi of the angle of pitch
(00) observations from the vertical (900) as established by the

"Honeywell Vertical Gyro

S( Sample standard error of the deviations of the angle of roll
r observations from the vertical (90*) as established by the

Honeywell Vertical Gyro

S(d mR) Sample standard error of the deviations of the RCA LaserRange-Finder measured observations from the 7091-A

Altimeter (Modified) iaeasured observations

S(doR Sample standard error of the deviations of the RCA Laser
Range-Finder measuree observations from the AN/APN-22
Altimeter measured observations

NT (d) Total number of positive and negative deviations
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BACKGROUND. Experiments conducted in 1963-4 in the Arctic region
by the U. S. Army Electronics Command Avionics 'Laboratory have confirmed
that rhe electrical propertics of polar ice and snow do, Ia faeL, cause
microwave frequencies to suffer high surface reflection losees, and low
transmission losses within the medium. These results correlate well
with the theoretical predictions. Specifically, these experiments re-
vealed that, for standard 4.3GHz radar altimeter frequencies, normally
incident electromagnetic waves impinging upon essentially uncontaminated
snow surfaces effectively penetrate the snow/ice media to depths of
several hundred feet. In many instances, sub-surface interfaces provide
signal reflections which are of substantial amplitude and are readily
detectable at the radar altimeter receiver. These sub-surface reflections
can be as much as 20 db stronger than the surface reflections.

Findings further showed that radar altimeters employing nanosecond
pulse leading-edge-tracking techniques are significantly more accurate
than those utilizing frequency modulation. The accuracies of these
techniques differed greatly because the pulse system measured altitude
from the closest terrain surface (the leading edge of the reflected
RF pulse) whereas the FM-CW system integrated all the surface and sub-
surface signal returns, with no discrimination against the more distant
radar echoes.

Specifically, CW altimeter errors as great as 150 feet were
recorded for an actual altitude of 300 feet. Pulse altimeter errors
were considered negligible; in fact, they were not measurable since
they did not exceed the instrumentation error inherent in the experiment.

In April 1967, Research and Development personnel of the U. S. Army
Electronics Command Avionics Laboratory conducted radar altimeter tests
in a Choctaw CH-34C helicopter over the three-story high rain forests
of the Panama Canal Zone. These tests, the first of their kind, were
made possible through the use of specially designed instrumentation
including an air-portable range finder with a height-measuring accuracy
of one meter.

During the tests, altimeter data was continuously gathered and
recorded while the project aircraft was flown 1000 miles over dense
Jungle. The project personnel previously conducted experiments in
Greenland, which first showed the unique potential of this nanosecond
pulse radar, with its leading-edge-tracking technique, for providing
accuraLL height measurements over deep ice and snow of the Arctic

?gion.

While most radar altimeters provide relatively accurate height
information over large, flat airstrips they typically become highly
unreliable and grossly in error when employed over varying terrain such
as deep polar ice and snow or high Jungle foliage.
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In addition to providing radar altimeter performance data not
heretofore obtained, the technical information resulting from these
tests proved a significant factor in selection of radar altimeter design
techniques most suitable for Army aircraft applications. More recently,
procurement of the AN/APN-171 Radar Altimeter, employing this recommended
design concept, has been initiated for Mohawk aircraft applications.

1. INTRODUCTION. Through the support of USATTC (USA Tropic Test
Center), Ft. Clayton, Canal Zone, including the Army Aviation Detachment
at Albrook AFB, radar altimeter tests were conducted over the high jungle
canopy in the vicinity of Rio Chagres and Rio Pina, with three flights
on April 4, 5, and 7. The tests were conducted in accordance with the
procedure and objective as stated in the test plan prepared by the
Office of Operations Research entitled: Design of Experiments for
Radar Altimeter Techniques at the Tropical Test Centerj Panama Canal
Zone. Data was obtained from 16 hours of flight time at altitudes of
600-feet and 1000 feet, using a CH-34C helicopter bearing tail #34508.

Altogether, approximately 500 bits of data were obtained, each
representing a comparison of the indicated attitude of one of the test
item radar altimeters with actual aircraft height measured through use
of a precise laser distance measuring equipment with a 1-meter accuracy.

2. SUMMARY AND CONCLUSIONS. It is to be understood that these
conclusions are primarily statistical in character, and hence, are
(statistical) inferences drawn from the evidence based solely on the
observations. Furthermore, the observations in this analysis are
deviations of measurements from the reference measurements of altitude,
pitch, and. roll.

ill

The following conclusions emerge from this anýalysis:

2,1 The 7091-A Altimeter observations were predominantly negative
and, hence, the readings were consistently less than the respective RCA
Laser reference readings on all flights (see Table 2).

2.2 The AN/APN-22 Altimeter readings were predominantly positive
and, hence, the readings were consistently greater than those of the
respective RCA Laser reference readings with the exception of readings
taken at a height of 600 feet and a velocity of 70 knots (see Table 2).

The following plausible explanation for conclusions 2.1 and 2.2 is
offered by the Project Engineer: It appears that the narrow (one milli-
radian) laser beam penetrated some appreciable distance through openings
in the rain forest canopy before striking the uppermost foliage layer.

2.3 The analysis of variance technique shows that the population
means of the test Items, namely 7091-A :ind AN/APN-22 Altimeters, are
significantly different at a level of significL.'ce uf .01 on all flights
for which data were obtained.
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2.4 The standard deviation of pitch angle observations taken
during the use of the AN/APN-22 Altimeter were consistently less than
the respective standard deviations of pitch angle observations taken
during use of the 7091-A Altimeter (see Table 3).

2.5 For the combined positive and negative observations at a
at a height of 1000 feet at both velocities, the absolute magnitudes
of the means and the standard deviations of the 7091-A observations are
consistently less than the respective means (absolute magnitudes) and
standard deviations of the AN/APN-22 observations. The opposite results
are obtained at a height of 600 feet and at a velocity of 70 knots (see
Table 1).
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3. DESIGN OF EXPERIMENT.

3.1 Oblective of Experiment: The objective of the experimental
test is to evaluate the accuracy of the Honeywell Model 7091-A Altimeter

(Modified) in a tropical zone, utilizing the nanosecond pulse leading-
edge-tracking technique.

3.2 Test Item 1: The Honeywell Model 7091-A Altimeter (Modified)
utilizing the nanosecond pulse, leading-edge-tracking technique appeared
capable of reasonably good accuracy in previous tests in the temperate
and arctic zones. (See "Radar Altimeter Techniques in the Arctic Environ-
ment"...R. J. Lucas & R. C. Cruickshank, Presentation at 1966 Meeting of
the AGARD Avionics Panel (NATO), Avionics Laboratory, USAECOM, Ft. Monmouth,
N. J.) Thus, the same altimeter was selected for testing to determine the

accuracy of Jts design technique in a tropical zone. The Honeywell Model

7091-A Altimeter (Modified) will be referred to as Test Item 1.

3.3 Test Item 2: In the statistical analysis of this experiment,
the accuracy of the AN/APN-22 Altimeter, utilizing a frequency modulation,

continuous-wave design technique is compared with the accuracy of the
Honeywell Model 7091-A Altimeter (Modified). The AN/APN-22 will be
referred to as Test Item 2.

3.4 Standard of Reference: The standard of reference for evaluating

and comparing the accuracies of the two test items is the RCA Laser

Range-Finder AN/GVS-l(XE-6) which has a one (1) meter error (one sigma).
The test items and the instrumentation were installed in the CH-34C
(CHOCTAW), a helicopter capable of seating twelve people.

3.5 Measured Observations: The measured observations consisted of

height readings above the closest foliage at height levels of 600 feet

and 1000 feet for the following pieces of equipment:

a. Honeywell Model 7091-A Altimeter (Modified)

(1) The observations were measured in feet
(2) The measured observations of height using the

Honeywell Model 7091-A Altimeter are symbolized
by Hm.

b. AN/APN-22 Altimeter

(1) The observations were measured in feet
(2) The measured observations of height using the

AN/APN-22 Altimeter are symbolized by Ho.

c. RCA Laser Range-Finder AN/GVS-l(XE-6)

(1) The observations of height from this piece of
equipmsnt serve as a standard reference to deter-

mine the deviations of height for both the Honeywell
Model 7091-A Altimeter and the AN/APN-22 Altimeter.
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(2) The measured observations of height using this
piece of equipmpnt- arp aym~b_1-e by H

(3) The observations were measured in meters and
converted tu feet in the calculations.

(4) The Laser Range-Finder has an accuracy of + 1 meter
(=I sigma). i

(5) Environmental specifications:

,1 a error - + [5 ft + 3%H + 5* 8-•tH ""

where - is the altitude rate.at

(6) It was intended to obtain measured observations
of height at the following levels of height:

SH H2 H H4 H H6 iJ1  H2  1 3 1 14 5  H6

400 600 800 1000 1200 1400

L
r *However, the data was obtained only at the 600 ft.

and 1000 ft. height levels in the actual experimenta-
tion. Data was recorded at the rate of one observa-
tion every minute at the 600 ft. and 1000 ft. height
levels.

Tbh means and standard deviations of d R were computed
and also the number (N) of positive an!- negative
deviations from HR.

____ H- 600 ft.

H H d -H-Hm R mR mR

Likewise for 1000 ft., etc.

d MR 'd MR) ;(+d R) N(-dMR2
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3.6 Controlled Parameters (constraints):

a. Velocity of Aircraft (CH-34C)

(1) (55+5) knots

(2) (70+5) knots

(3) The quantal error is 5; i.e., the velocity is
"between 50 and 60 knots or between 65 and 75
knots.

b. Aircraft Attitude

(1) An attempt was made to maintain the aircraft
attitude to within +2* from the vertical (90*);
i.e., the deviations of pitch angle ( p) and

the deviations of roll angle (0 ) should each
be within +2* of the vertical.

(2) For each RCA Laser Range-Finder measurement
taken, corresponding measurements of 0 and
0 r were taken.

(3) A positive measurement of 8 indicates the nose

1p"i of the aircraft is in an upward position; a•:

negative measurement of e indicates the nose
p

of the aircraft is in a downward position.

(4) A positive measurement of 0r indicates their
aircraft is rolling to the right; a negative
measurement of 6 indicates the aircraft isi. r

rolling to the left.

(5) It was intended to select from the data a set of
observations H corresponding to the low attitudem
angles e and e arranged in order of magnitudep r
for each level of height (H):

H1  600 ft.

p m r

20 20

2.50 (Likewise for
H -1000 ft.)

2

326



c. Aircraft Heiahtr (NI - arcnl 600 ft...

and 1000 ft. However, it was intended to use height
levels of 400 ft. to 1400 ft. in steps of 200 ft.

3.7 Comparison Between Test Items 1 and 2: For each of the
two levels of H, height readings were to be taken as recorded from
the AN/APN-22. These will be compared with the output of 7091-A (Test
Item 1) and, of course, with the Standard of Reference, the RCA Laser:

H1,- 600 ft.

LASER 7091-A AN/APN-22

(old equipment)

HR H H d d

Rm o oR mR

Where H U Height recorded by old equipment
0 (AN/APN-22 Altimeter)

The standard deviations of the observations from the reference
data was computed to obtain the distribution of the errors. However,
in the actual experimentation, data was obtained only at the 600 ft.
and 1000 ft. levels of height.

3.8 List of Equipments:

a. Equipment Items to be Tested:

"(1) Test Item 1 - Honeywell Model 7091-A
Altimeter (Modified)

(2) Test Item 2 - AN/APN-22 Altimeter

b. Test Instrumentation and Accuracies:

(1) Meter (1 a) RCA Laser Range-Finder AN/GVS-1 (XE-6) -

the output of the Laser is recorded on a decimal
drum readout in digital form.

(2) Five-foot (5 ft.) Recorder, Mark 280, Brush
(Precision Servo Penmotor Recorder), 2-Channel
with two events channels
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(a) Two DC analog channels recorded test item
altimeters: neignt aata

(b) One event mark channel were synchronized with
the laser-firing (once every minute).

(3) 0.5* 1 a Vertical Gyro, Cageable, Honeywell Mfr.
Part No. JG 7044 A-35, SN.04

(a) Used to establish vertical standard for
measurements of ths deviations of pitch
angle and roll angle from the vertical
(900)

(b) Pitch attitude deviations recorded as positive
or negative

(c) Roll attitude deviations recorded as positive
or negative

(d) The above gyro outputs are displayed on a
zero-center metor and are recorded with each
laser firing on the decimal drum readout.

(4) TS-352/U Multimeter, Tektronix Model 422 scope, HP
Model G382A Variable Attenuator (Precision). The
HP Model is used to check the sensitivity (loop
gain) of the Test Items.

NOTE: It is to be emphasized that velocity was not

treated as a factor, since the radar response (with
1000 pulses per seconds) would not be affected by
velocities below 300-400 knots. This is the reason
that no interactions were computed.

*The remainder of this paper was reproduced photographically from the

author's manuscript.
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4 Awkl.LlVs oi Vari'iluce Comlpotat;.ons:

(For Testing the HIypothesis of Equal Means Between Test
Item Height Observation' j

Fjight #3 Height 600 fecc Velocity (70±5) knots

.7001-A (Test Itiit 1) AN/AFN-22 (Test Item 2)

n, 41 25 = 29 ni =:35+35= 70

X. -979.0 X2 . :20.6

-979.0 -33.75 feet X 2. 6 .29 feet
29 70

2: x ij 57517. 12 X = 56241.78

T T =N , = 29 + 70= 99"•I X.,=-979.7,0 +20,6 = -0.68 6 .

99

k ii 57517.12 + 56241. 78 113758.90

TV'.. s 99(-9, 88)2 = 9276.54

Sum of Squares Between Groups (SSB):kG

SSB = . nlX21 . - TX*.. a 29(-33. 75) + 70(. 29)2 - 9276. 54 s 23762.16

Sum of Squares Within Groups (SSW):
k n, k

XSSW - nt•X2 . = 113758.90 - [29(-33, 75) + 70(, 29)*) =80720.

Total Sum of Squares (SST):
tk ni

.SST =r ij - TX.. = 113758.90 - 99(-9. 68)'= 104482.36

ource of
Variation df SS MS

etween
roups 1 23762.16 23762, 16

Vithin
rou - 97 80720.20 832.17

[Total 98 104482.36

Fcomputed" - 9 23762. 16 = 28.55
832.17

F 99(1.100) = 6.90 (tabularvalue of F-distribution)

Since 28. 55 >> 6.90, the population means are highly signif-
icantly different at a significance level of . 01
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Flight N 3 Height 1000 feet Velocity (70±5) knots

7091-A (Test Item 1) AN/APN-22 (Test Item 2)

n, 7+ 45 = 52 ng 53+ 5 = 58

XI. -1517.20 X8. 3563.90

. -1517.20 : -29.18 feet . 3583.90 6 51.45 feet
52 58

n, ng
X X•' 82670.32 X 2 291629.06

T N. =52+ 58 110

K.. .-1517,20+ 3563.90 r 18.61
110

k ni

E X~j 8670.2 +29169, 6 = 3 36203.038

'iTR. . a-110 (18. 61)° 38096. 30

!!•I !Sum of Squares ]Between Groups (SSB):

KssB - il'. - Tl. 52 (-29.18 ). + 58 u1. r)e - 38096.30 • 225193.94 '

: Sum of Squares Within Groups (SSW):
k k .k

S F ( 1 E7 2 9 3. 3 26 21. 09 11009.1

Total Sum of Squares (SST): u

"SSTinc X29 -0T91. 374299. 38- 38096.30 e 336203. 08
.!j

hSource of
•; ariation df SSMS
! Betweenl
Sroups 1 225193,.94 225193.94
SWithin
!-roups .... 108 1111009.14 1 1027. 88

a109 336203.08

Fom--(1-108) 2251- 9 219.-09omue 1027. 86

'•, F 9(1, 1001) 8. 00 (tabular value of F-distribution)

I Since 219. 09 >> 6. 90 , the population means are

•" highly significantly different at a significance level of .01.
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Flight #2 Height f 1000 feet Velocity (55*5) knots

70A1I-A. (V ern__)_- AN/APN-22 (Test Item 2)

n, 12 + 79 = 91 no 78 + 13 - 91

Xx. -3135.00 'Xa. = 3374.80

. -3135.00 a -34.45 feet . * 3374.. .80 37. 09 feet
91 91

SXo - 180825.10 z x 239507.20

T r N r.91 + 91 - 182

2 -3135.0 + 3374. 8 = 1.32

It ni182

X, 18o2.. 239507..26 420332. 38

TX'., . 182 (1.32)2 :317.12

&urn of Squares Between Groups (SSB):

k
SSB Za nXt' -I TX'.. - 91 (-31. 45)? + 91 (37. 09)' - 317.12 232887.70

i A

Sum of Squares Within Groups (SSW):
k ni kSSW. Z ZxNo -V, nii a 420332. 36 -233184. 82 18714,. 5

Total Sum of Squares (SST):

SST a= x . T7 2.. . 420332.36 - 317.12. 420015.24

Source of
Variation df SS MS

Between
Groups 1 232867.70 232867. 70
Within
Groups 180 187147,54 1039. 71

Total 181 420015.24 .

F (1,l I8) , 232867. 70 223.97

compute 1039.71

F (1, 150) - 6, 81 (tabLklar value of F-distributitn)

Since 223.97>> 6.81 . the population means are
highly significantly different at a significance level of .. 01
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5. t- Test Computations:

Tc-tin ._til p~t iqsib of ,gual Means Between Test Item
fleight tObs rvations

Only negative deviations for the 7091-A Altimeter and positive deviations
for the ANiAPN-22 Altimeter were used in the following calculations be-
cause of their predominant occurrence i-i the data.

Fljjj 3 He ight • 600 feet Velocity: (70-5) knots

7001-A (Trst Item 1) AN/APN-22 (Test Item 2)

n, a 25 n, = 35

X, = -40.96 R2 - 22.61

s 24, 15 12 = 26.82

One-Sided Test: _

- njnq(n•+n,-2)
- (n't+n) (njs 1'+nsi'g-

Stt- t-4o. 96 - 22.6s1]" f )[25x35)(2 5+35-2) .
q(25+35)[25(24,15)2+35(16. 82)

I *t= -20.91

For a significance level or c= . 05, the tabular value of the
t-distribution table is: t1 .. 05(50) z t. 95(50) = 1. 67

Since -20.91 <-1.67, the population means of the test items
are highly sitnificantly different at p . 05 level of significance.

Furthermore, for a significance level of a . 005, the tabularF value of the t-distribution table is: t1 _. 005( 5 0 ) = t. 995(50) x 2. 68

Therefore, since -20. 91 << -2. 68, the opoklation means
of the test items are also highly significantly different at oL = ,005

level of significane.

C Two-Sided Test:

For a significance level of t . 05, the tabular value of the
t-dlstribution table is: t1  •.(50) - t 975(50) z 2.01

Since I t 20. 91>>2. 01, the Population means of the test
items are highly significantly different at _ . 05 level of significance.

Furthermore, for a significance level of a . 01, the tabular
value of the t-distribution table is: t. n1(50) S t (50) z 2. 68

A-., .995 '
2

Since I t 1= 20.91>>2.68, the population means of the test
items are also highly significany•l.different at e t 01 level of
*Significance. 332
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I
Flight #2 Height 1000 feet Velocifty-55.5) knots

7091 -A (Test Item 1) AN/APN-22 (Test Item 2)

nj 79 n2  78

S-40.96 46.73

as 24.35 s= 28. 01

One-Sided Test:

t [-40. 96-46. 73] _____(7878..9+78-2.

L (79+78)[79(24, 35) +78(28. dIl)2

t -20.80

For a significance level of a . 05, the tabular value of the
t-distribution table is: t (100) - t (100) 2 1. 66

1-.05 .95

Since -20.80<<-1. 66, the population means of the t2st items
are hi.•hl si•nificantly different at a: . 05 level of significance.

Furthermore, for a significance level of a .e 005, the tabular
value of the t-distribution table Is: t (100) t . (100) z 2.63

1-005 .995

Therefore, since -20.80<<-2.63, the population means of the
test items nre also highly significantly different at a: . 005 level of
igni.ficance.

Two-Sided Test:

For a significance level of a .05, the tabular value of the
t-distribution tablo is: t (100) t (100) 2 1.98

1-. 05 (0)=t.975 (0)- .9

Since It I• 20. 80>> 1. 98, the_.ulation means of the test
items are hihjg! s nifantl •evdifferent at asificance,

Furthermore, foxr a significance level of a = 01, the

tabular value of the t-distribution table is: t. ( 100)=t 9 2.631-0 995(100)2.6

2

Since It I= 20, 80>>2. 63, the poulation means of the test
Items are also highly si nificantly different at.L . 01 level of
si_•nif ic a nce.
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Flight #3 Height 1000 feet Velocity: 75) knots

7091-ATest Item 1) ANJAPN-22 (Test Item 2)

Snj 45 ns - 53

* -34.57 6 87.96

24.01 sg :29.52

One- Sided Test:

t -34. 57 67. 96 '
(45+53)C45(24. 1)5(. 5"2) "P

t= -18.42

For a significance level of - . 05, the tabular value of
the t-distribution table is; t. 05(80) t 95(80) = 1. 66

Since -18.42<<-1. 66, the eOHulation Mea.ns of the test items
are hiahly sitnificantlv different at_...... 05 level of siunificance.

Furthermore, for a significance level of a .005, the tabular
value of the t-distribution table is: t (80) - t (80) a 2.64

1-.005 .995
Since -18.42<< -2.64, the Population menns of the test items

are also highl-y significantly different at p . 005 level of significance.

I. Two-Sided Test:

For a significance level of a .05, the tabular value of
the t-distribution table is: tl. 0480) t (80) z 1.99

Since It In 18.42>>l. 99, the population means of the test
items are highly significantly differen 05 level of significance,

Furthermore, for a significance level of a .01, the
tabular value of the t-distribution table is: t1  01(80) t 99564.

Since I t 1-f 18.42> > 2.64, the population means of the test items
are also highly significantly different at a * .01 level of significance.
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I
6. HOMOGENEITY OF VARIANCE COMPIITATION•.-

F-Test Computations for Testin• Homogeneity of
Variance Between Test Item Height Observations

"Only negative deviations for the 7091-A Altimeter and positive deviations
for the ANiAPN-22 Altimeter were Csed in the following calculations be-
cause of their predominant occurrence in the data.

Flight #3 Heieht f 600 feet Velocity L70,5) knots

7091-A (Test Item 1) AN/APN-22 (Test Item 2)

n. 25 n= 35

d 24.15 0(d 16.82
8(dR

5 (dn) 583.22 282.91 .
mR Olt

Fc te(24, 34) 583.22 6
Fcomputed 282.91 2.06

F 95(24, 34) = 1. 84(tabular value of F-distribution)

F 99(24, 34) = 2. 38(tabular value of F-distribution)

Since 2.06 > 1.84, the hypothesis that as (d C(dmR) (doR

is contradicted by the observed data at a significance level O= . 05

Since 2. 06 < 2. 38, the hypothesis that a (d a(d(mR) (OR)

is not contradicted by the observed data at a significance level

0: .01
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Flight k3 Height • 1000 feet Velocity (70±5) knots .

7091-A (Test Item 1) AN/APN-22 (Test Item 2)

% -- =45 na w 53

S(dmR) (dR) 29.52

a 570.48 aa 871.43
(dmR) (d

F (52, 44) = 871.43 =1.51computed57.4
F 4a576. 48

F 95(50, 44) = 1. 63(tabular value of F-distribution)

[F 9(50P 44) a 2. 00(tabular -value of F-distribution)

Since 1. 51 < 1. 63 and 1.51 < 2.00, the hypothesis that
o=(dR) is not contradicted by the observed data at either

(dMR) oR significance level of ao .05 or a= .01

Flight #2 Height • 1000 feet Velocity (55U5) knots

7091-A (Test Item 1) AN/APN-22 (Test Item 2)

n, - 79 n-= 78

mR 24.35(d) = 28.01

K 8 (dR = 592.9D2 SdR) 784. 56S(d (d

F ut(77, 78) 784.56 1.32
592.92

F 9 5 (75, 80) = 1.45(tabular value of F-distribution)

F 99(75, 80) = 1. 70(tabular value of F-distribution)

Since 1.32 < 1.45 and 1.32 < 1.70, the hypothesis that
.R - "is not contradicted by the observed data at either

m (oR significance level of a = .05 or a: .01.
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I

Computatiun.: Cnfidmnce Interval.s for Means of 7091-A
Altirnet r Mes quremnnts

The following confidence interval crniptatiolls were performed only
with the nugatvve o,.d;t;f! of thp WWI1 -A Altimptpr hreAuRe of their
predomninant occurrence in the data.

4

Confidence Limits = X + t s

Fugbht #1 Height - 600 feet V._.eoct,: -55+5) knots

Sn r 51 a -21, 39 .fi-32. 10

95% Confidence Interval -32 0. 016 0802

=-38.18to -26.02

991c Confidence Interval= -32. 10 d: 2. 682139 z2,0807

a-4 0. 21 to -23.99

Ugt. # ,3oHei.ght 600 fe~ Velocity: (70*5) knots

n 25 s -24.15 R, -40.96

9516 Confidence Interval -40.96-h 2.06 24.15 -40.96 * 10. 1549
K.24

-'51.11 to -30.81

09% Confidence Interval -40. 96*2. 80 24-5 -40. 96 * 13. 8028

a.-54. 76to -27.16

Flight # 2 Height P 1000 feet Velocity: (55*5) knots

n a 79 s -24.35 X -40.96

24 35
95% Confidence Interval '-40. 96* 1. 99 ( ) -40.96* S. 4866

9-46.45to -35.47

99% Confidence Interval -40.96*2. 64 _ ) ,-40. 96 * 7.2787

'-48. 24 to -33.68

Flight #3 Height r41000 feet Velocity, (70*5) knots

n - 45 8 - 24.01 X- -35.34

95% Confidence Interval -- 35 34*2.015 ( .) =-35.34. 7. 2934

-- 42.63to -28.05

99% Confidence Interval -35.34* 2.69 •.01 -35.34 * 9.7361

3 "-45.08to -25,60
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Comuutations: onnfiripnreP Tnt•rvtr1Q fnr Mepnn mf ANiAPN-9.9

Altimeter Measurements

The following confidence interval computations were perfon-ned only

with the positive deviations of the AN/APN-22 Altimeter because of
their predominant occurrence in the data.

Confidence Limits = X +t -

Fl._ igght 6 600 feet Velocity: (70*5) knots

nu 35 a 16.82 X' 22.61

16 89,
95% Confidence Interval r 22. 61 * 2. 03 L:-- ') =22. 61 * 5. 8557

=16.75 to 28.47

S99f Confidence Interval = 22. 61 *2.725 a 22.61 * 7.8605-

x 14.75 to 30. 47

Flight #2 Height vio00 feet Velocity: (55*5) knots

n= 78 s 128.01 9-46.73

95% Confidence Interval z 46. 73 * 1. 99 ) '46.73 * 6.3520

= 40. 38 to 53. 08

99% Confidence Interval 46. 73 * 2. 64 ý801 ) = 46. 73 * 8. 4268

7 38.30 to 55.16

Flight #3 Height fuOOO feet Velocity: (70*5) knots

n- 53 s = 29.552 X = 67.96

95% Confidence Interval = 67. 96 * 2. 01 Q 5. *)821

* 59. 73 to 76.19

99% Confidence Interval = 67.96 * 2.68 ( ) 67.96 * 10. 9708

* 56. 99 to 78. 93
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of 7091-A Altimeter Measurements

"The following confidence interval computation3 were performed only
with the negative deviations or the 7091 -A Altimeter because of their
predominant occurrence in the data.

S> O
2  

is the I00(l-a)% upper confidence
X &,, I-a interval for u2 4

I'T-- <a' is the 100(0-0)% lower confidence

X U',a limit for a,

Two-sided confidence interval for the unknown a'

2s-- a' where P represents the

X u ,-- number of degrees of freedom,2 2 i is the level of significance,
and X is the Chi-Square
distribution,

S.li..ht #1 Heileht, 600 feet Velocity: (55*5) knots

n 51 S 21.39

95% Confidence Interval: 50(21. 39)2 <,=< 50(2.3 9)'
71.4202 32,3574

320.31 < cyQ < 706.9078

17.90 <a <26.59

99% Confidence Interval: 50(21.39)2 <' < 50(21, 39)'
79.4900 27,9907

287. 7922 <oa
2 

< 817. 2930

Fih~t#3 Height ' 600 feet Velocity: (70±5) knots

n 25 s = 24, .5

95% Confidence Interval: 24(24. 15)2 <aQ < 24(24. 15)2

39.3641 12.4001

355. 5864 < a' < 1128. 8086

18.80 .< 33. 60

99% Confidence Interval: 24(24. 15)' < CF., 24(24. 15)'
45.5585 9.88623

307.2388 < a2 < 1415.8463
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I

Computations: Confidence Intervals for Standard Deviations
of AN/AkN-22 Altimeter Measurements

The following confidence interval computations were performed only

with the positive deviations of the AN/APN-22 Altimeter becaus0- of

their predominant occurrenre in the data.

r The confidence interval for the unknown va Is:

xx

Flight N 3 UlihL 0 et Vlcty.:--_11*) knots.IP,1

n 35 s= 16.82

95% Confidence Interval:. 34(._. UP <a2 <

_46..9792 16. 7908

204.7505 < YO < 572.8745

99% Confidence Interval: 3_4(..,2_ < < a._I16.. Ba,.•.-

53. 6720 13. 7867

179.2188 < oY2 < 697.7029

13,39 < 0 < 28.41

Flight #3 HeigLh.- 1000 feet Veloc_(U:7-
0 -5) knots

n = 45 s 24.01

95% Confidence Interval:. 44(24. 44(24. < )C
59.3417 24.-4331

427.4418 < < 1038. 1459

20.67 < a < 32.22

99% Confidence Interval: 4.(2-4 -01I= < _L2< .. .

66. 7659 20. 7065

379.9113 <a2 < 1224.9836

19.49 <0 < 35.00
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Si I
n - 78 s~28.01

95% Confidence Interval 77(28. 01 )m 2 < 7..(8.O

106.629 (r 57. 1532

S566.5543 < a' < 1057.0034

23,80 <a 32.51

99% Confidence Interval: 77(28,0-)' < < 77(28.0,1.I
T1 6. 321 a 1 < 70

519.3484 < a' < 1180.5504

Flight # 2 _Iikbht l 1000 feet Velocrt.: A±,15) kot•s

n= 79 s3 24.35
95% Confidence Interval: 78(24. 3 5)8 •4, t.

S106,629 57.1532

433.7277 a' < 809.1927 i .i

20Q, < < < ( 8-45

99% Confidence Interval: 78(24, 35)' 78(24, 35)'
116.321 51.1720

397.5890 < < 903, 7746

19 < < 30.06

Flight N 3 . .Height 1000 feet Velocity: (70•5) knots

n b3 s = 29. 52

95% Confidence Interval. 52(2Q,5_t a ;, < 52(29. 52)2
71.4202 32.3574

634.4756 ar < 1400.4333

2< . a < 37.42

99% Confidence Interval: _.L2(?9, 2)' < 52(2@, 52)'

79.4900 27.9907

570,0639 < ao < 1618.9084

3 23388 <0 < 40.24

H - .. - .-. . . -. . . . .



M. MEAN SQUARE SUCCESSIV•o v FRENCE: A Test for Randomness

One of the tests used to detect randomness is the mean square
difference method. A brief discussion of this method is deemed ad-
visable because of the sensitivity of this method to non-random fluctu-
ations. This method is particularly sensitive in detecting long-term
trends, periodic or excessively rapid.oscillations in observed data.

i ~Let us assume that X1, X2,.. Xn represent n successive
observations from a population which obeys the normal distribution law:

I exp (X 2 aa

with the mean ju and standard deviation c . The sample mean and
standard deviation are defined respectively:

Xi a X

The mean square difference is:

" 6" ': (Xt, z

F ; I. e., we compute the mean of the squares of the n-i successive

differences between the observations.

It can be shown that:

6E r 12 1= , and thus 8212 is an unbiased
E sestimate of o

The variance is: v r6 /2n-2ln-2
C-7-J (n-l)(n+l)
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Tn +Mc +a + ura,, ft, f ... n,,-.,.,4,.÷.--ring .'.
In8 ad8 wei are* t~ ar ccpt~ n db inu

of 8a and sB ; we are particularly interested in the ratio:
62/sO since the disparity between the values of 8' and s
will indicate the trend or short period oscillations in the observations.
It is assumed that the value of 68 will not be increased by the trend
as appreciably as so ; hence a small value of the ratio 68/1s
will indicate trends in the observations. In the case of short periods
of oscillations both 62 and so will increase; and the increases
in 82 will be proportionately greater.

62
The distribution of 1 - a 0

is symmetrical with average value zero for random samples drawn from
a normal population. For values of n>25, 0 is very nearly normally
distributed with average zero and variance equal to

(n-1)(n+l)

We can use the statistic: t 0 e/0 and the percentage point,
for a standard normal deviate in testing tor significance of 6 for
large values of n . Long term trends in the observations would be
indicated by high negative values of t ; and high positive values of
t would be symptomatic of short rapid oscillations in the observations,
Significance levels for the 8'/ s' ratios have been tabulated by B. I.
Hart (Significance Levels for the Ratio of the Mean Square Successive
Difference to the Variance. Annals of Mathematical Statistics, Vol. XIII,
1942, pp. 445-447).

It is clear from Tables 7 and 8 on the following pages that
the values of t(-y'_") at the 95%1 confidence level are not statistically
significant. This means that the hypothesis of randomness of the data
is not rejected at the 5% significance level.
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AN EXPERIMENT USING NUMERICAL ANALYSIS TO MODEL A
rU1LN±Cj.IGAL~ RE~.LATION BE-±WEZ5 AMD SYIFAU SENSOR

RESPONSES AND REENTRY VEHICLE CHARACTERISTICS

Andrew H. Jenkins
U. S. Army Missile Command
Redstone Arsenal, Alabama

INTRODUCTION. It is believed that prediction models can be developed
by the analysis of experimental data in light of the known physical laws
pertinent to high speed reentry. The development of the model is accom-
plished by numerical analysis of the full-scale reentry experimental data
obtained on the eastern and western test ranges.

In the past, considerable effort has been expended to rigorously
and theoretically describe the interdependent and interacting phenomena
of hypervelocity reentry. This is a very complex and difficult job. In
general, the basic theoretical relations are not adequately describedfor ideal conditions. Of more importance, the real case of reentry is i
usually described with even less precision than the ideal case. This is
not to say that progress has not been made in the purely theoretical
approach nor is it to imply that it should not continue. The selection
of the proper variables and stratification of empirical models depends
upon such efforts.

The phenomenological processes which occur during reentry couple
with the radar sensor to produce gross effects in the measurable re-
sponses. These gross effects are considered to be typical from test
to test, and differ only in the degree or level of effect on the response.
The empirical determination of the degree or level of effect is to relate
the sensor responses to the body parameters and the trajectory parameters
by experimental observation without the full benefit of a complete theore-
tical knowledge to describe the underlying physics and chemistry of the
phenomena. This is graphically depicted in Figure 1.

The variables used are those which are recorded by the radar system
on data tape or published in data reports and are, of course, representative
of the real-case responses in a real time frame. Accurate estimates of
body characteristics made continuously in real time are the ultimate goal
of this approach. Also, it is desired that the prediction models contain
sufficient physical variables representative of the sensor, body, and
trajectory parameters that the simultaneous masking of all measurable*
becomes economically and practically infeasible for the offense.

In the development of empirical prediction models, the operational
conditions should not be ignored. The final utility of any techniques
of target identification depends upon the capability of the model to make
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accurate real-time estimates. Also, the models should be fairly easy
and economical to incorporate into the defense system. It should be
one which can be improved in accuracy and updated as more knowledge
of the problem is accumulated.

In the real operational situation, the defense system essentially
stands alone. The identification of the objects in the reentry complex
must be done in real time. This can be less than 60 seconds. The
models should be able to provide continuous estimates of the characteris-
tics of the objects in the reentry complex. It is also highly desirable
that the model estimation process converge as soon as possible in the
real-time track to the best estimate of the true value of the particular
body parameter (for example, weight). This provides a longer time for
decision making or for intercept at the highest possible point. The
estimation of as many body parameters as possible is obviously highly
desirable. The body parameters can be used for cross-checks on the
estimated values of each other. Every object in a reentry complex will
not be a simple decision case of "warhead-decoy" even with a very precise
model. There will be grey areas. Therefore, it is believed that several
models"for different characteristics of the body will be essential in the
final docision,: to commit an interceptor.

It ha not been determined just how more than one body parameter
'estimate will be made in real time. It may be required to tabulate
the data in tho, form of discrets time (for example, altitude) intervals
and develop prediction modelsefor each time increment and body charac-
teristic ratherothan use one model throughout the reentry track.

It is mentioned that the material presented in this report represents
a minimal effort which is neither complete nor concrete. Some of the
"variables used in this "first cut" numerical analysis were selected
because of expediincy and availability in order to make a beginning in
this approach,

FORMULATING THE MODEL. The most common physical characteristics
of the body are weight (W), diameter (D), and length (L). The drag
area product used in conjunction with weight can provide an estimate
of ballistic coefficient (B). Shape is one characteristic that affects
the drag area product (CDA) for a given set of reentry trajectory condi-

tions and is reflected in the value of CDA. This value in turn is

reflected In the ballistic coefficient.

Some measurements that can be made by the radar are radar cross
section (a), velocity (V), time derivative of velocity (V), and
altitude (h). There are characteristics of radar such as wavelength
(X) and aspect angle (*) on which the above measurements depend.

The first body characteristic selected to empirically determine
the functional dependence is vehicle weight (W). It is hypothesized
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that the estimated weight W' is not a function of sensor characteristics
-n 00jcoyPr&.tr r U4000'.f&CI W IWLSWO UU&MU OYOL0UW. LIAM6 A.9%

HO0: W' f (S,T),

and similarly for the other physical characteristics of the body

H D' 0 f (S,T) (1)

H L' # f (S,T).

The alternate hypotheses are

HI: W' "f (S,T),

and similarly

H D' - f (S,T) (2)

V L f (S,T)

where W', D', L' = estimates of the true values,

S * sensor parameters,

T - trajectory parameters.

The null hypothesis H0 is tested against the alternate hypothesis H1 by

deriving a model of W, D, and L as a function of S and T by regression
analysis.

The general multivariate linear regression analysis is written

y a + ax + a2 x2 +.., ax , (3)

thwhere x - the p independent variableP

a - the true intercept0

a a the pth true coefficient
y* - the regression estimate.
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An analysis of a-.ctual range data is made to test the null hypotheses
that ani estimate of a physical characteristic is independenL of sensor,
trajectory, and body variables. The range data are analyzed with a
computer program that calculatcs the rcgression of the dependent vari--
ables on the independent variables by a stepwise technique. The regres-
sion program analysis is a linear relationship, but it can be made to
accommodate nonlinear functions by any oiae of 20 different transforma-
tions, such as logarithms. The analysis first calculates the simple
correlation coefficients between each independent variable and the
dependent variable. The variable with the highest correlation is
selected for the first regression calculation. The linear regression
of the form

y a a 0 + a1 x1  (4)

is therefore calculated for one of the physical characteristics; say W,
as y, and the independent variable with the highest simple correlation
as xI. Each of the remaining independent variables was then correlated

with y and xI. The variable (x 2 ) was then selected as the variable that

produced the highest of these correlations. A second step regression was
then calculated for the form

y n a0 + a1 x 1 + a2 x2 . (5)

If the correlation of regression relationship should be reduced by
the addition of another variable, this variable was removed. If, however,
the correlation increased, the varia[.le. was retained and the step procedure

is repeated for another variable up to the pth variable and coefficient
as shown in Eq. (3).

Currently, it is believed that the best body parameter for target
identification is the weight of the reentry vehicle. Therefore, weight
was selected for the initial effort. Quantitative measurements of
parameters obtainable from the field sensor are V, V, h, and a. The
operational problem requires that the prediction model be expressed in
terms of the parameters measured by the sensor. The radar cross section
is dependent on the ratio of the plasma frequency to the incident radar
frequency. The plasma frequenc.y is in turn dependent on the strength of
the shock front and viscous forces. The viscous forces determine velocity,
acceleration, and altitude changes as a function of time. The interaction
and interdependency of these parameters (as well as others) determine the
effects of the entire reentry environment perturbations on the magnitudes
of then parameters as measured by the sensor, as well as their histories.
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fiance, the change in the inertial force (PA) of the body is caused

by the drag force (Fe) acting on the body as it penetrates the earth's

atmosphere. As an initial effort in the development of a prediction
model, these forces were assumed proportional, neglecting gravity. That
is

FA ( F (6)A D'

This simple assumption is used as a basis to postulate an equation in
which the constants and coefficients are assumed unknown or at least
different from the Newtonian values. FA and FD can be expressed as

W
FA ma -V (7)

1F PV C A. (8)

Equating (7) and (8) and solving for W, it is found that

2pV CDA A

w - (9)
2V

The independent variables of Eq. (9) are p, V, CDA, and O. Opera-

tionally the radar cannot provide estimates of p and C DA directly.

Thcrefore, these variables must be expressed in terms of measurements
available from the radar. The density p can be expressed as

p w -Bh (10)

where p0 - standard density,

B - a constant,

h - the altitude.

Hence, density is expressed as a function of altitude, a variable which can
be obtaikied from the radar. The remaining variable CDA can be expressed as

a fuiction of the radar cross section (a).

Bethe, Edwards and McDonald, and Martin have studied the functional
relationship of a and CDA. The relationship developed is of the form
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a K (C A)N (11)

where K - a constant,

N - the exponent.

Substituting Eq. (10) and (11) into Eq. (9) and rearranging terms, the
following is obtained

2 1/N
P09 V a

2 e(12)

1/N Bh2(K)fI eh

In the above expression, W is expressed as the function of a constant

times the ratio of V2 and al/N to V and h. Since the relationship is
nonlinear, it must be linearized for the regression program. The equation
is expressed as

V Val ,a3

W a0  (13)
ýa2 ea4h

where a- the regression constant

a1 , a 2 , a 3 , a 4 - regression coefficients.

Since Eq. (13) is nonlinear and the regression program is linear, then

the equation must be linearized. Natural logarithms (which may not be
ideal) were used to linearize the equation. It can be expressed as

lnW - ln a + alnV+alV + alna + a h. (14)0 1 2 3 (14

SELECTION AD REDUCTION OF REENTRY TEST DATA. Analysis of actual
full-scale reentry test data requires that a historical sample of tests
be selected. The selection of the tests requires the establishment of
certain criteria.

The criterion for numerical analysis is that the test data be
essentially complete throughout a prescribed trajectory range. That is,
the radar must have maintained nearly continuous track. Also, it was
imperative that each channel of track be accurately identified as to the
type of information. (This is to avoid a mixing of the data sets.)
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•tie trajectory criteria were established on the basis of the
deposition of momentum energy into the disturbed medium through which
the vehicle pansp. The deposition of energy begins to be appreciable
in the continum flow regime when the shock forms and viscous effects
come into play on the body. The effects produced in this regime provide
measurable variables which relate to the underlying physics of the inter-
change of momentum and energy between the body and its environment and
the coupling of these phenomena with the sensor responses. If these
phenomena are assumed to be typical, then it remains only to relate the
amplitudes of the sensor returns to the levels of body parameters. For
a typically sized reentry body at typical reentry velocity these energy
interchange effects become pronounced at about 300 kft. However, the
portion of the trajectory selected is from 150 kft. to 60 kft. in order
to bracket a region of maximum kinetic and dynamic interchange for the
sample of venicles selected.

The body criteria were selected simply to obtain a sample with wide
ranges of body characteristics such as weight, length, diameter, drag-
area, and shape. One restraint placed on the initial selection of
sample bodies is that all bodies be of the ablative type. The rationale
behind this on the initial study was to have all bodies of the type
which would at least unintentionally and somewhat randomly contaminate
the flow field with typical reentry vehicle materials for data consistency.

One other constraint placed on the selection of the data sample
was a constant radar frequency. Future analyses could relax this con-
straint and the data of several different frequencies could be used to
develop s more universal model. In the operational mode bistatic
measurements may be made. It would be desirable to have the frequency
variable included. The prediction model could be adjusted for each
particular discrete radar frequency used by the system.

After the criteria for selection of the sample were established, the
data had to be actually selected and reduced to a usable format. The
radar data tapes were located and presumably the proper information
channels identified. A coupling program was developed so that the data
could be directly machine fed from the tapes into the regression pro-
gram. A printout of the smoothed values of the sensor measurements
recorded on the tapes was programmed for a check on the data tapes
input to the regression program. The data were taken from the data
tapes at the appropriate time after lift-off, corresponding to the
established trajectory altitude limits. The data were smoothed to
obtain discrete values in 0.5-sec. intervals. (The intervals could
be shortened to, say 0.25-sec. intervals.) The 0.5-sec. intervals
provide an average of about 15 matched set data points for each
reentry test selected. A total of 10 reentry bodies were included
in the first analysis. The range of body characteristics selected
is shown in Table I.
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TABLE I

Body shapes: Simple spheres to complex sphere-cone-cyl-flare

Body diameters: 7.5 inches to 90 inches

Body lengths: 7.5 inches to 169 inches

Body weights: 17.5 pounds to 7181 pounds

ANALYSIS RESULTS. The reentry data sets as compiled were subjected
to analyses. The values were programmed into the regression analysis on
the computer, a total of 150 matched data sets. As mentioned above, the
data sets are over the altitude regime of approximately 150 kft. to 60 kft.
They represent about 7.3 sec. of reentry time.

These data were run on two different types of regression programs
which computed the same values for the constants and coefficients. The
general regression equation is

mlW' * lna0 + a lnV + a2 1nV + a3lna + a 4 h. (15)

Each regression coefficient was statistically tested for significance.

Let al, 02, a3, and aL be the true values of the regression

coefficients whose estimates are a1, a2, a3, and a4 , respectively. The

following hypotheses are tested:

H a1  0
0 -

0 2

H : > 0H1 2 4•O

H 3 0
1 4
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The t test used is as follows:

ai - Ii

ti - (17)
Si

where S, = standard deviation of regression coefficient, ai, i-1,2,3, and 4.

The ccmputed values for S are as follows:

a : S1 a 1.218

a 2 : S2 m 0.0761

a 3 : S3 - 0.4234

a4 54 * 0.0206.

The calculations of t are:

al al 8.741- 0

t -- 7.175 (18)
S1  1.218

a2 - a2 -0.08688- 0

-2 -- 1.14 (19)
S2  0.0761

£3 -~ 0.2640 - 0

33t- - 0.6236 (20)

s3 0.4234

a4 - a4 -0.1414 - 0

c64  - - -6.842 (21)
S4  0.0206

For a 95 percent confidence level (a - 0.05), the critical value for t

is 11.960| • Therefore

t- 7.175 >11.9601, Reject H0o

t 2 a -1.141>11.9601, Accept H0 ,

t3 - 0.6236>11.9601, Accept H0 ,

t4 0 -6.842>11.9601, Reject H0 .

357



Therefore, the regression coefficients a2 and a are not significant.

The regression equation is now recalculated as

in W' -a0 + a In V + a4 h, (22)

which expresses the weight of a reentry body in terms of the velocity
and altitude as determined from the radar sensor. The regression
equation was calculated to be as shown in Eq. (23). The actual values
are not shown for security reasons.

in W' =Ina0 + a1 lnV - a4 h, (23)

The correlation coefficient is

v = 0.602

The final equation (23) was used to calculate point-by-point
estimates of 13 independent reentry object weights. The range of
characteristics of these objects is shown in Table I1.

p. TABLE 11

Shape: Simple sphere to sphere-cone-cylinder-flare

Diameters: 4 inches to 40 inches
Lengths: 12 inches to 167 inches

Weights: 7.5 pounds to 3,390 pounds

The calculated values are shown in point plots of estimated weight
versus altitude simulating real time estimates of object weight. These
plots are Figures 2 through 14.

A composite plot of all thirteen bodies is shown in Figure 15.
This is a semi-log plot of the best estimate of weight versus altitude
which comes out of a reasonably straight line which is expected in view
of the transformation of the data to fit the hypothesized equation.

You have noticed that the plots show positive or negative slopes
indicating increasing or decreasing weight estimates as a function of
altitutde (for example, time). Only two plots have indicated both
positive and negative slopes where the true weight was estimated twice
during the time-frame of calculation. The desirable shape of the real
time plots of individual objects is shown in Figure 16. It would be
desirable to have the estimate converge to an asymptote to the true
weight within some established confidence limits. All bodies displaying
these curve forms could be classified as decoy or RV. Those outside the
confidence limits would be engaged.
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DISCUSSION. The results of the regression analysis computations
indicate that the two variables, acceleration and radar cross section,
do not significantly relate to the body dimension weight. This is not
to say that they are not significant, but rather that with the data
sample used they could not be established as significant. There are
reasons which could account for the failure to establish significance
of these two variables. One reason could be the poor distribution of
these variables in the sample of data. The poor distribution could
be due to the error of estimating these quantities by the radarI sensors. Considerable error could be contained in the estimates of
the negative acceleration of the body because of the azimuth and
elevation rate changes of the antenna caused by shifts in tracking
the electromagnetic centroid of the reentry complex. The error con-
tained in the radar cross section is possibly caused by the inherent
error in the C A radar cross section relationship used in the develop-

D
ment of the hypothesized equation.

Another reason is that the 95 percent confidence level may be too
high for the degree of precision in making the measurements. A further
stratification of the data could be made that would provide a range of- more consistent variation in the acceleration and radar cross section
readings. However, this would be useful only for study purposes and
would not improve the inherent inaccuracy of the radar system estimates
in the real operational case. The improvement in the accuracy of the
values would establish their significance and raise the present cor-
relation coefficient, of 0.602. Weight estimates of the reentry vehicle
would be more accurate with an improved correlation coefficient.
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ILLUSTRATIONS

Figure 1. Schematic of Plasma and Wake of Hypervelocity Bodies

Figure 2. Estimated Weight Versus Altitude RO-i

Figure 3. Estimated Weight Versus Altitude RO-2

Figure 4. Estimated Weight Versus Altitude RO-3

Figure 5. Estimated Weight Versus Altitude RO-4

Figure 6. Estimated Weight Versus Altitude RO-5
Figure 7. Estimated Weight Versus Altitude RO-6

Figure 8. Estimated Weight Versus Altitude RO-7

Figure 9. Estimated Weight Versus Altitude RO-8

Figure 10. Estimated Weight Versus Altitude RO-9

Figure 11. Estimated Weight Versus Altitude RO-10

Figure 12. Estimated Weight Versus Altitude RO-i1

Figure 13. Estimated Weight Versus Altitude RO-12

Figure 14. Estimated Weight Versus Altitude RO-13

Figure 15. Composite Plot, Estimated Weight Versus Altitudes

Figure 16. Idealized Plots of Weight Versus Altitude
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SOM[E EXPLUI~~NCIES IINLABORA:TORY CONTROL INVESTIGATION*

Buffalo, New York

1. iNTRODUICTION. S)tatistical qua] Ity control. as a way of life
in American, Canaidian, and British indui:,try is over twenty years of
age. Further, as a logical extension of the scope. of applied StdtiStit-S

in industry, statistically* designed experiments and analysis of variance
have been increasingly used over, perhaps, the last fifteen years. One
phase of industrial operations. however, still appears toi be rather slow
in making ise of the app I ca Lions of s-tot ifLi cal imethotis to) thle analysis
and control of its routine activities. 1 refer to the typical chemical
laburatory, wherein there are frequentl.y many ways in which the opera-
tion can be made more efficient in terms of precision and accuracy and
overall reliahility of analysis. Much of the potentlial improvement in
effectiveness can be delineated, achieved, and preserved through the
use of statistical experimental and controi techniques.

In the past few years, my colleagues and 'I have had thle opportunity
to participate in the study of one such laboratory, whose director
realized lie had many problems connected with the achievement of improved
precision and accuracy in the analytical results, and was quite coopera-
tive in permitting experiments designed to Shed light an the specific
problem areas, so that control measures may be instituted and/or proce-
dures changed. Since more or less standard techniques of analysis were
used, describing some of oar experiences In that laboratory may be of
possible use to others confronted with similar situations. Objectives,
means of accomplishment, and conclusions will be discussed to the exclu-
sion of technical. details of computations, or theory.

Let me describe the spttinr; for you. A wet .homistry laboratory
routinely analyzes samples resulting from a particular event. Severai
hiundred samnpies, over a wide concentration range, are delivered to the
laboratorcy for analysis. The analysis is performed colcrimetrically,
and tile goal- is to optimize the precision and accuracy of the results.
There are two different colorimetrIc instruments, with two units of
each, in service. ono instrumpentf is mainly automatic In its sample
preparationI and analysis; tile other- is Largely nanunaJ. T here are fo)ur
anialysts availalbfe . and any comib itation or al I four may be assigned to
the jab when 1.t comnes into the lahoratncr . Iihc niumtbr of samples which
may result from thv evunt is usually larger than c:an be handled by aill
four analysts during a regular 8 hour shift. When the budget permits,

*Tihis work was performed under Contract Na. DA l8-')35-AMC-280(A), Field
Evaluation Division. Technical Support Directorate, LT. S. Army Edgewood
Arsenal, Maryland.



overtime is used Lu -cfnLpJ.eCL the analyses within one calendar day.
Otherwise, the work may re.quire two, or even three calendar days.
Since the reagents and standard solutions havre varying degrees of
perishability, delays may be deleterious to the yield estimated from
the analysis.

With this background in mind, the need will be rather obvious
for the various experiments to be discussed in this paper. The first
two or three will be presented in greater detail than the latter
I ilstrations.

2. ANALYSID OF ALIQUOT VOLUMES. One factor contributing to bias
and variation in results was believed to be lack of uniformity in the
aliquot, volumes in the test tubes containing the samples. To obtain
the aliquot volumes, the samples are originally collected in larger
vessels, an amount in excess of that prescribed is poured into a test
tube, and a suction apparatus is used to draw off excess liquid to a
purportedly reproducible level. The test tubes are in racks which
hold 40 tubes in a 4 x 10 rectangular array. Since many racks are
used for the analysis of a given event, it was suspected that rack to
rack variation* and tube to tube variation may be to blame for some
bias and variation in the analytical results.

A components of variance model approach was selected, since the
interest lay in estimating variances.

2.1 Estimation of R-ack Variance.

For the estimation of tack variance, ten test tube racks were
randomly selected. Similarly, forty test tubes were randomly selected
and tared. The test then proceded as follows:

The forty test tabe'i were placed in one rack, filled and drawn
down to volume. The tubes and their contents were weighed, and the
total weight of liquid determined by subtracting the tare weight of
the empty test tubes. The test tubes were then returned to the same
rack, refilled, and again drawn down to volume. Reweighing of the
test tubes and correction for tare weight then provided a duplicate
weight determination for the given rack. Upon repeating the above
procedure for each of the ten racks, one obtained ten pairs of
determinations. The measure of variance provided by variations among
the means of the ten pairs includes rack variance as well as other
random effects. On the otherhand, differences between duplicate
determinations made In the same rack provided a variance estimate
from which the rack combination was eliminated. In this way, it wag
possible to isolate the rack component and compare its magnitude with

*Since thL suction apparatus is applied to tubes positioned in a rack,
variations In racks due to nonuniform depths of tube bottom recesses
may contribute to nonuniformity in residual volumes.
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the magnitude of tho residual variance, Weight, of course, is being
used as a proxy for volume. Table I contains the results of the
analysis of variance.

ANALYSIS OF VARIANCE OF CODED DATA

Source of Sum of Degrees of Mean Expected
Variance Squares Freedom Squares Mean Squares

Between Racks 18,122.8 9 2013.6 2 + 2 2

2
Within Racks 524.0 10 52.4 a

TABLE I

2 2From the above, one can solve for a, since U is given as
524

52.4. a 2-proves to be 980.6. Additional calculations provided the

interesting result that the coefficient of variation representing the
total variance for a random determination on a random test tube in a
random rack was 11.4%, while if determinations are constrained to the
same rack, or if rack variance is eliminated, the coefficient of
variation could be reduced to 2.6%.

The data also permitted an analysis to be made of error contributions
by the individual racks. Noting that the error contribution from any
rack will appear as a bias for all test tubes within that rack, the
rack bias may be estimated by examination of the mean weights of the
40 aliquots in each rack. Table II shows some interesting data.

One way to eliminate the error contributions from a rack is to
establish a correction factor, as function of the bias, for each rack.
A second and immediately applicable method would consist of isolating
the most heavily biased racks, such as those starred in Table II, and
either retiring them from service or making some physical adjustment
to eliminate the bias. The actual outcome was an even better corrective
measure. When the laboratory management was made cognizant of the
facts, it obtained a specially made rack, and required that all tubes
were to be drawn down to volume only in that rack, although this
necessitated one extra handling step.
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RACK BIASES

Rack Deviation from Mean
Number Weight for all Racks

I + 4.9
2 + 1.9
3 + 20.4*
4 - 2.6
5 + 2.9
6 + 14.4*
7 - 85,6,
8 + 31.4*
9 + 4,4

i0 + 7.9

*A Significant Deviation

TABLE TI

2.2 Estimation of Test Tube Variance.

For the estimation of test tube contribution to the variance of
aliquot weights, forty test tubes were randomly selected, tared, and
placed in a particular rack. These test tubes were then filled, drawn
down to volume, and we i&hed individually. Correction for the tare
thus yielded an estimate of the volumes of 40 randomly chosen test
tubes. The same test tubes were then replaced in the same rack,
refilled, and the process repeated. Thus, a pair of determinations
was obtained for each of the forty test tubes in the rack, The
measure of variance provided by variation among the means of the
forty pairs includes test tube varlability and lack of reproducibility
of the suction device, but does not include variance introduced by
racks since only one rack was employed. On the other hand, differ-
ences between duplicate determinations made on the same test tube
provides an estimate of the variance attributable only to lack of
reproducibility of the suction process.

An analysis of variance similar to that discussed above was
performed to investigate test tube effects. The between test tubes
mean square was significant compared to the within test tubes mean
square. Now, the within racks variance found earlier is another
independent estimate of the between tubes variance. That the two
such estimates are in excellent agreement may be seen from Table ITI,
which shows the pertinent coefficients of variation. In addition, the
measure reflecting the degree of reproducibility of the suction
process is included, aq is the rack to rack measure.
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CUEFFICIENTS OF' VARIATION

Based on Rack to Rack 11.4%
Based on Within Racks 2.67
Based on Between Test Tubes 2.4%
Based on Within Test Tubes 0.4%

TABLE III

Table Ili affordG a summary of the t:wo experimental studies.
Obviously, the rack to rack variation is Lhe largest. As has been
noted above, however, appropriate corrective action was taken to
eliminate this effect. The fact that the two independent estimates
of the tube to tube variation are so close to each other clearly
establishes this as a real source of variation in volumes. Further
investigation revealed differences in tube diameters and tottom
curvatures. These are standard laboratory supplies, however, and
could not be ordinarily obtained at better quality levels. But, a
policy was established to request that new orders be filled from one
production lot whbneover possible, and some inspection procedure was to
be set up to examine receipts of new tubes. The data also reveal that,
since the within test tubes coefficient of variation is so small, and
it reflects the filling reproducibility of the suction device, there
is probably no problem on that account.

3. STUDY OF COLORIMETERS AND ANALYSTS. In the study of any
operation, for the purpose of enhanciug its effectiveness, all sensitive
phases must be considered. In the preceding section, the drawing down
to volume step was examined, and placud under a better state of control,
This section will be directed at consideration of the equipments and
operators.

As noted earlier, there are two instruments of each of two types,
and four analysts. Thus, an analysis or group of analyses may be
performed on any one of four instruments. Unless all, four possess
the same intrinsic properties of variation, color perception, transla-
tion of color perception to signal output, etc., each machine represents
a different analytical, system, and hence, as its output, produces results
which may not be completely comparable to the outputs of the others.
That is, i set of resultl may be high or low, Imor-e dispersed or less,
as a consequence of the particular instrume.nt which generated it. Such
a situation dilutes the effort of a laboratory, since, on the one hand
real differences between batches may be mascked by the analytical system,
or, at the other extreme, minor differences might be exaggerated by the
system.

Much the same might be said with reoard to the several analysts
who share the bench work responsibilities.
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Because of t|lse possibilities, the four instruments and the four
analysts were studied through a 3-factor experiment designed to yield
information on accuracy and precision of each instrument and analyst.
The third factor was concentration level, since this also was suspected
of contributing to bias and Iosq. of precision. The data output was
combined with data obtained earlier in another connection.

3.1 D)rift and Bias.

"Earlier in the study program, the presence of instrument drift was
suspected, and reaffirmed in subsequent data analyses. Accordingly, one
output of thu cxpcrimeit. w~s a set of data deliberately designed to pro-
vide evidence pertaining to instrument drift, This was accomplished by
comparing results from each of three concentrations which were used.
Comparisons were made between first and second members of pairs of con-
secutive samples of the same concentration, and early in the run and
late in the run analysis.

The first comparison type revealed clearly that there is a carry-
over effect in the automatic analyzer, Rather conclusive evidence
showed that if two samples of the same concentration followed a higher
concentration, the first of the two showed a higher concentration than
the second. If two samples of the same concentration followed a lower
concentration, the first of the two showed a lower concentration than
the second. And, when two samples of Lhe same concentration were first
in a series of unknowns, the tirst was lower than the second. Thus,
it may be concluded that there is indeed a carry-over effect.

The same study showed that the manual instruments did not exhibit
a significant drift, except in one intstance of an apparent interaction
between one of the analysts and one instrument. SincA the samples
presented to the manual device are each in its own test tube, this is
further confirmation of the possibility that the common test cell in
the automatic Is not sufficiently purged before entry of the next
sample. As still further evidence to support this thesis, it should
be noted that ali four analysts' work showed the upward drift in the
calibration groups on automatic No. 2., and all but one did so on the
automal.ic No. i. On manual No. 1, all four analysts had little or no
drift indications, while on manual No. 2 three of the four did so. It
may also be noteworthy that one analyst was tile exception in each of
the two cases cited. The difference between his performance and that
of the odher,.' will also be evident below.

AnaLysis for instrument bias reveated that the two manuals and
one of the automatlcs had positive bias, while the other automatic
had a ciegative bias. If only one analysit had made all determinations,
on only one concentratLion, the abo,," conclusion would be relatively
firm. However, since several concentrations were used, interactions
may have ifLue•lced the resulted That is, the amount and direction



of bias on each instrument may vary with the concentrations, or with
the analyst. The instrument-concentration interaction is shown in
Table IV.

AVERAGE BIAS BY INSTRUMENT-CONCENTRATION COMBINATIONS

Concentration Level

Instrument 850 2540 5070

Automatic 1 + 48 + 100 - 51
Automatic 2 + 48 + 15 - 114
Manual 1 + 94 + 48 - 18
Manual 2 + 85 + 62 + 20
All + 69 + 56 - 27

Bias as % of Concentration 8% 2% - 5%

TABLE IV

It can readily be seen that, with but one exception, bias is an
inverse function of level, so that the low concentration has the highest
bias and the high concentration has either a negative bias or the least
positive bias for a given instrument. Stating it differently, lower
concentrations tend'to be measured higher than actual levels, while
higher concentrations tend to measure lower than actual values. However,
the order of magnitude of the bias does not appear to be any clear
function of the particular instruments.

The ultimate breakdown of bias is according to instrument,
concentration, and analyst. Since this three factor interaction was
also statistically significant, further insight can be gained by examina-
tion of the three factor bias components, as in Table V.
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AVERAGE BIAS BY ANALYST-INSTRUMENT-CONCENTRATION COMBINATIONS

Instrument

Concentration Analyst M2  A1  A2

850 1 123 167 97 103
2 70 70 37 17
3 130 75 25 22
4 30 60 40 30

2540 1 140 113 153 117
2 73 60 107 93
3 - 07 - 07 170 120
4 - 13 80 - 30 -83

5070 1 57 - 27 !-133 70
2 - 20 93 93 -293
3 -155 - 11 82 - 45
4 83 117 - 90 -157

TABLE V

A quick confirmation of the concentration effect noted above may be
obtained from the first appearance of the negative biases in the middle
concentration, and the greater number of negatives in the high concen-
tration.

More importantly, however, Table V provides an entree' for drawing
inferences on analyst bias. For example, thULe are 12 instrument con-

centration combinations. In 9 of these, analyst 1 has an extreme amount
of bias, and in 2 others is close to an extreme. Thus, he is outlying,
or out of line, in 11 of 12 possible cases. Similarly, analyst 3 is out
of line in 7 cases, followed by analyst 4 who is out of line 5 times,
and analyst 2, with 3 times. Further, from the original data analyst 1
has an over-all bias of +82, analyst 3 has +25, analyst 2 has +18, and
analyst 4, +06. Analyst I is the same one who was the exception to the
general pattern of drift shown by the analysts, as discussed earlier.

While analyst 1 is almost consistently high, having the largest
positive bias on both manuals and automatic 2, the others were quite
inconsistent, Analyst 2 ha.i the largest negative bias, under analyzing
on automatic 2, although his biases on the other three instruments are
positive; analyst 3 has negative bias on both manuals, and positive on
both automatics. Analyst 4 shows a bias pattern just opposite so that
of analyst 3.
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3.2 Precision,

A similarly detailed analysirs was made of precision. In the
interests of brevity only the findings are presented herein. Analyst
1 stood out again, this time for having the largest variances, The
other three analysts showed sooe inconsiste.ncies, but not approaching
the degree indicated by No, 1, In terms of the instruments, the two
manual instruments had higher variances than the two automatics, but
not significantly so. An Important finding, and m0t L616t corroborated
early suspicions, was that variance increased with concentration levels.
Indeed, a good Linear fit was obtained by taking the logarithoa of the
variance as a function of the logarithm of Lhti concentrjtion level.

4, STABILITY OF STANDARDS,. By now, the overall program has
indicated the need for control over supplies, instrument operating
characteristics, and efficiency of the individual analysts. One
important phase of the operation which had not yet been examined was
the stability of standard solutions used for obtaining calibration
curves and checks on machine drift.

Happily, a large test run was in the offing, and we were able to
design an experiment using several standard solution concentrations.
Samples were inserted as blind samples in each rack of 40 tubes of
ostensible production samples. The quantity of samples, coupled with
no overtime allowed, dictatcd that three working days be required to
perform the chemical analyses. Since by now the laboratory management
was convinced of the upward drift trait of the automatic colorimeters,
they decided to use only the manual instruments for thin particular
job. Hence, one variable was eliminated from the areas 01 .oncern.

the results of the analysis were again in part confirmatory of
other findings, and in part substantively directed at support of an
important hypothesis. Once more, for the third or fourth independent
case, variance was found to be related to concentration level. But
more Importantly, the data showed that over a three day period, con-
centrations were not stable, definite anti significant. losses In levels
were dutermined on the second day as compared to the first day, and
the third day compared to tihe second, This effecw was present
independently of instrument or analyst. En the course of any one day,

there was some hint ot f dto r lonatLoln fronmt atart to end, but it was not
suf'tic lout ly clear cut and pers is ,teaL to pe'niL.t a pot;itive assertion.

5. CONCLUSION. [ would like to ccnclude Lhis paper by summarizing
the various applications of scatistical methods which we have found
useful in laboratory control investigatitons, and the kinds of answers
that were obtained, And, since this audience has its primary interests
in the applicaLion; of statistical quality control to laboratory problem
areas, we may note the implied laboratory controls whitth were recommended
t:o management in this particular case.
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5.1 Summary,.

It is obvious from my remarks in Sections 2-4 that designed
experiments and analysis of variance are well suited to the study
of laboratory operations for the purpose of pinpointing problem areas.
Less obvious are several other techniques which were used to good
advantage in this particular program.

Significance tests on means and variances helped to evaluate the
merits of an analyst vprmus another, or one instrument versus another.
Nonparametric tests for trend assisted in the investigation of instru-
ment drift and stability of solutions. Regression and correlation
analysis were also used in the study of the volumes and concentration
level, In an ancillary part of the overall investigation response
surface analysis was also used to good advantage.

On the strength of the findings resulting from the applications
of these techniques, it was possible to confirm many conjectures which
had previously existed, as well as absolve of responsibility for bias and
variation one or two aspects of the operation. On net balance, many
recommendations were tendered the management, including those discussed
in the next section.

5.2 Statistical Control Recommendations.

A laboratory control program administered by a suitably trained
individual would be.highly desirable, It would serve the purposes of
keeping management infonrmed, pointing out where corrective action is
required, and helping the analysts to do their best.

As a minimum, the following elements should comprise the control
eLiort:

1. Control charts for each colorimetric instrument, to maintain
surveillance over bias and precision. A multi-vary chart may be useful
here, or a combination of differences and range charts.*

ý. Control charts on each automatic colorimeter, for drift control.
Individuals and moving ranges charts may be useful here.

3. Control chlarts on selected reagents and other critical solutions,
to avoid using one which has been degraded. Averages and ranges control
charts should be useful here, application being made to reagents obtained
from vendoea as well as those prepared in house. [n the former case,
the procedures can be related to acceptance saampLing.

*Those unfamiliar with multi-vary charts may find explanations in either
reference given above.
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SOME 9TATISTICAL ANALYSIS WITH RESPECT TO COMPOSITING

IN THE SAMPLING OF BULK MATERIAL

A. J. Duncan, The Johns Hopkins University

1. INTRODUCTION

The sampling of bulk material differs in a number of respects from
the sampling of Individual items. These differences are discussed at
t;me length in reference (1). one difference Is that bulk material can
bo physically composited whercaE individual items cannot. It is thus
possible in the case of bulk material to take a physical average in
lieu of an arithmetic average. Although mixing and reduction may be:•: ..... •expensive, the great decrease in the ntumber of tests that have to be
run with physical compositing is likely to yield considerable economy.

To illustrate bulk sampling with compositing consider the follow-
ing example. An inspector wishes to determine the percent nitrogen in
a given lot of fertilizer. The lot contains 200 bags. He selects 20 bags

Sat randcm and with a sampling tube draws a small portion of fertilizer *
from each of the 20 bags. These portions are poured on to a rubber
mat, -are thoroughly mixed and hand-quartered until there is just
enough to fill a laboratory bottle. Two tests are run on the reduced T
composite sample.

It is to be noted that the reduction of the composite sample is
7 a form of subsampling and is thus accompanied by sampling variability.

SThe variance of this is called the "reduction variance" (r2). There

is thus a greater variability with compositing than with arithmeticI2

averaging. In the analysis that follows a 2 will be one of the terms
in the sampling variance whenever there isrcompositing. Generally it
is assumed that the reduction variance is the same whether we are
reducing a large or somewhat smaller quantity. Of course, if the
composite sample that is being reduced is not large relative to the
parL retaiaed, a finite population correction factor may have to be
applied.

Before we discuss the statistical aspects of compositing, let us
look at the statistical procedures pertinent to a case in which there
is no compositing.
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2, SAMPLING WITH NO COMPOSITING

Let us consider a modification of the ASTM Tentative Recommended
Practice for Samplin• Industrial Chemicals (E 300-66 T). Let us
consider only a single stage instead of the two-stage plan that is

! actually discussed in the Recommended Practice. To keep a concrete

example in mind suppose the bulk material comes in cans j.d is homo-i geneous within cans, but varies in quality from can to can. Assume
S~that we have an isolated lot of this material and are intmrested in

the mean of the lot. With our modification of E 300-66 T the procedure
would go as follows:

1. Take a preliminary sample of n 1 (e.g. 10) cans and measure
the quality characteristic of the contents of each can.

2, Compute Xj = In, and

(X - XI) 2 /(nl - 1)I i 3. Use these data to determine on overall sample size (n) that
would yield certain desired criteria.

4. Take an additional n - n 1 cans and test the contents of each.

5. Compute /A- IXin and 82 . Zi(Xi -)
2 /(n -).

T 6. Determine 0.95 confidence hlits for the mean of the lot.
Thus 0.95 confideafce limits for u would be X ± t 0 0 2 5 sýn where t

-in the 0.025 point of a t distribution with n. ldegrees of freedom.

3. SAMPLING WITH COM-OSITING

Now consider the above example if after the n cans are selected
they are physically composited and a single test made on this composite.
Assume that the nj preliminary cans are measured as before. By this

compositing we have reduced the cost of inspection by the cost of
n - nj - 1 tests. We have added, however, the cost of compositing n
cans and reducing this for running a single test.

3.1 WHEN BASIC VARIANCES ARE 0KOWN

The variance of the single composite measurement (Xc) will be

02X
n r a (1)

c

where a2 is the product v&rxance, ar2 is the variance of reduction and

a2 is the variance of anviysis. If we knew all three of the variances,
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0.95 confidence limits for w would be give- by

1.96 + 0 2 + 21"
c r a

3.2 WHEN BASIC VARIANCES ARE UNKNOWN

Let us see what we can do if we do not know the basic variances.
Note that

-~ 4 r(X - P)
c c

1/2 + na2 +n,;2]1/
2

S+ C2 + a2 x r a
n r a

is normally distributed with zero mean and unit variance. Also note
that s12 contains both the product variance (ax 2) and the analytical

variance 0 which we will assume are independent so that

i E(s1
2ý - X2 + aa2

(n, -1sl2
Then + has a X2 distribution with ni - 1 degrees of freedom.

It follows that

c

92+ n0'
2 + no2) C -21/+c2)/

has a t-distribution with nj - 1 degrees of freedom.

The above statistic would appear to be of little use to us since
we do not know the basic variances. Note, however, that it can be
rewritten in the form,

Ts i - ) + a2t2 1/2

S1 •+ no r2/0 X ; 4- n, a /Cx 7 (2)

Thus if we know the ratios r 2/CX 2 ane a 2/ C 2, the statistic could
be used and good guesses as to the ratios might work out fairly well.
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For example, with n =20 variation in the ratio# trom .8 to 1.2 causes

the factor in brackets to vary only from .208 to .234, so that a 202
margin of error in estimating the ratios would cause only a deviation

i of 0.02 to 0.03 in the value of t, hardly enough to have a a gnificant
• ~effect on the probabilities involved.

!If we wish to set up approximate 0.95 confidence limits for inthos case, we would have

0.95 confidence limits for u

a 1 + no 2/0 2 + no 2/0 211/2

"-c n I + a 2/X 2 X 0. 0 2 5 (ni -1)

3.3 WH{EN OUTSIDE ESTIMATES OF VARIANCE ARE AVAILABLE

If we do not know Oa2# oa 2 , a 2 but have independent estimates,

we can proceed as follows. Let ;12 be an estimate of the reduction
variance based on fr degrees of freedom and let a 2 be an independent

estimate of the analytical variance based on fa degrees of freedom.
Then we will have

E(81
2 - a-2) a Ox2 + a 2 - 2 q 2a Xa a

and an estimate of the variance of Xc will be
ci

a1 " 2 2 + 2s2 n-1 '""--!

+ a -- +(---)---., *2_-
n a r n ft a r

This is a weighted sum of variances so that following Satterthwaite (4]

U~s 2 + (n - 2 + 12
1 n a e2r

o2
+ a

n a r

will have approximately a X2 distribution with degrees of freedom given by

[ + ý na
2  + ] 2

U7- n+
(a 2!n)l ((n 1- 2)a/02 ( 2•r)2

n-7:7 f f1 a r
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Hence the statistic

(X 1/2
S(x c + (n )2 + a21

na

will have approximately a t distribution with v degrees of freedom and
0.95 confidence limits for u will be given approximately by

Xc n n a rt .025 Mu 3

4. SAMPLING A STREAM OF LOTS

The preceding discussion was concerned with an isolated'loi and • ;
what kind of inferences we could make about the mean of the lot under n
varying circumstances. The approach to the analysis was strictly • ..

classical. Here we shall consider ASTM Tentstive.Methods for Mechanical
Sampling of;Coal (D2234-65T) and the point of view wrii be Bayesian.

4.1 ASTM D2234-65T

Sampling of coal on a conveyor belt consists of taking n increments
of coal systematically from the belt, compositing theme increments, N,
reducing the composite sample to a laboratory sample and making a. 4
determination of quality sich as ash content or the like. D2234-65T
offers a solution to the problem of how many increments should make up
the sample. The solution calls for a preliminary determination of the
basic variances and is based on the assumption that the values so
determined continue to be valid for routine sampling of subsequent lots.

4.1.1 THE STOCHASTIC ASSUMPTIONS ABOUT THE STREAM OF COAL

The program offered by this standard is based on a hypothesis
regarding the nature of the coal being sampled. This is that the
variations of quality in the stream consist of two kinds; one is a
local variance, the other a "trend" or "segregation" variance. It
is as if* the coal came in large segments which varied in average
quality from segment to segment, a measure of which is the trend
variance c 2 , while within the segments there is random variability
the varianhe of which is designated as o12 (since it applies to one
lb. increments). The within-segment variance is assumed to be the
same for all segments. Measurements of the quality of individual

*Note that this is considered to be an approximate working model,
not a true model. cf.[5].
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increments of w lbs. of coal taken at random from various segments with
no more than one increment per segment would thus have a variance equal

2to 0 +y 2 + a2 + 0a2 (where in this case a refers to the variance
L _

resulting from the reduction of the w lbs. of coal.)

4.1.2 THE PILOT STUDY

02234-65T calls for a pilot study for determining the basic
variance components for a given coal. The study provides for the
collection of 30 sets of two samples from a stopped conveyor belt.
"Each of the 30 sets of samples includes a very small sample, to
furnish data.for.the random variance, and &.large samploi to furnish
data for the system (trend) variance. Since one of the Important
components of variance is that due to segregation it is essential
that the 30 sets of samples be so distributed with respect to time•/:•:• : . •t .r~s 0•a• u~tp,, oal €o r-. represented" (6). ae ,mple.
r k tob . tak~en by a ito sec~tion BeltDivider.. "One of- -the sections

should be approximately the width corresponding to three times the
top sist of the coal and should trap a sample of between 4 and 20
lb. The other section should be approximately the width corresponding
8a 1 l" ] e ne eml p by etto 20 times the top size of the coal and should trap a sample between• :i •80 and 150 lb." [6]. Designate the small samples by the letter A

and the large samples by the letter B. The subsamples A are reduced
.... s.......... .yby a-riffle-to- laboratory samples of between 100 and 200 grams.

These are ground to -60 mesh for analysis. The subsamples B are also
worked down to laboratory samplei and ground tO -60 mesh for analysis.

The variances of the A and B results are measured by the usual

formula ±(Xi q)2

n- 1

Now if the weight of the A samples is w1 and that of the B samples
is w2 , then assuming w2 /wv to be an integer and letting aw 2 be

the random variance for increments of coal, weighing w1 lbs., we have

Expected value of Sa2 a 2 + a 2+w a2 +a2
A t w1  r a

and
w

Expected value of s 2 r2 + -La 2 + 0 2 + a 2
B t w V r a

21

An unbiased estimate of 2 will be given by

j94
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w2s2 -s2)
w& W2 - W1

4
and for 1 lb. increments, the random variance can be estimated at

To estimate the trend variance a 2, multiply a sB
and subtract. This yields

2 W2 SB -w S A2  2

t w 2 -w r a

where or2 and sa 2 are estimates of the reduction and analytical variances

obtained from another pilot study that need not be reviewed here. The
above estimates can be used to obtain an estimate of the variance of.
an increment of any weight w. Thus

0 w -2 + a 2 + gr 2 + 8 2

A composite of n increments would have an estimated variance equal to

+ r aa2
n r (4)

4.1,3 DETERMINATION Of n FOR SUBSEQUENT SAMPLING

The last formula is employed by the ASTM standard to determine
how many increments should be used in future routine sempling of a lot.
Thus, proceeding in.a crude manner, the standard notes that 0.95 confi-
dence limits for the mean of any given portion of coal from which n
increments of weight w have been taken, composited, reduced and tested
would be given roughly by

•2 11/2

c ±1.96 + 8t2  + 21- n r a

so if we wish the confidence interval to be of width 2A, then we would
take

2/
A 1.96 + a2+ s 21

S- 1.96 V n st+ 2+

and solve for n. The standard takes A a .10 p where • is a good guess
as to the mean quality of the consignment of coal.
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4.1.4 ESTIMATION OF THE MEAN OF THE CURRENT LOT

With the number of increments determined as described in 4.1.3,
the mean of a current lot is estimated by taking the prescribed number
of increments from the current lot, compositin8 them, reducing the
composite to a laboratory sample and analysing a specimen from this
sample. The result X is taken as an estimate Of the quality of the
lot. From the way in which the number of increments was decided this
estimate is expected to be within lOZ of the true mean of the lot.
If confidence limits are desired, they could be crudely determined by

4X 
+ 6 2- + '

2  11/2

4•2 USE OF PRIOR INFORMATON IN ESTIMATING THE MEAN OF A CURRENT LOT

It will be noted that while the prior information in variances is
used in Section 4.1.4 to set uparude confidence limits for the lot mean,
no use is made of the mean of the pilot study. The question may be
raised, however, as to whether the mean of the current lot would not
be better estimated by a weighted average of the pilot study mean and
the measurement X made from the current lot. The argument would run
like this. If tha various lots of coal were really large samples from
the stream of coal,, their individual means would probably differ very
little from the mean of the whole stream and the beat estimate we
could make of the mean of a current lot would be an estimate of the
mean of the stream based on all the information available for making
such an estimate. Suppose, for example, that in the pilot study the
mean of the 30 large (w2 Yb.) samples was X and tte mean of the 30

small (w, lb.) samples was X , then an estimate of the mean of a
subsequent lot on which we hXoe a composite sample measurement X
could be taken as c

3O-w2I +3O 1 +nwXc
3 W2 If +3 W1 cýl+nK

30w2 + 30wI + nw
where w is the weight of the n increments composited in the sampling
of the current lot. An alternative estimate that omits the small
samples of the pilot study would be

30V2X'
2 + nwXc

30w2 + nw

This would be based on less data. The reduction in the amount of data
would not be great, however, and as discussed below, it mijht be feasible
to use X2 in a supplementary test of significance but not X1 .
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Pooling the pilot study with the current lot measurement should be
preceded by a statistical test to determine whether the assumption that
the two se~s of data came from the same population is a reasonably valid
one. Actually it will be sufficient to test whether the means differ
signigicantly. If w! plan to use X1 above, the test would be based on

a comparison of 30w + 30W1 X with X or if we plan to use 32, on
_ 30w2 + 30w,

a comparison of X with X
w2 c

It is necessary at this point to interrupt the argument and to
note that if the sampling and analyticial procedures used is as
described in Section 4,1.4 above, there will be only one measurement
made on the current lot, viz., X , and this will provide us with no
information on the variance of tfe current lot. In order to be able
to run the suggested significance Lest, it will be necessary for the
sampling and analyticial procedures to be modified to give some
information on variability of the current lot. To accomplish this
it is recommended that in lieu of a single composite sample, 4 separate
composite samples be formed* and msgaured separately. The mean of the
four separate composite measures (X ) would take the place, of the
single composite measure X and the variance of the 4 separate composite
meani would yield an estimite of the variance of the current lot.
Thus, we would have

XCI + XC + XC3 + X

Yc 4 9

and
E(Xi-X2

c 4-I4

and a s 2 would be an estimate of the variance of increments of weight w

from the current lot.

Returning to the discussion of the significance tests, it is to be
noted that if we set a - 30w2 / (30w2 + 3Owl) and b - 30wl/ (30w 2 + 30wl),
the variance of the weighted mean of the pilot study data would be

= alal-2 + b 2a. 2 + 2abro- a-weighted mean wX wI w! w2W2  w1  1 w

where r is the correlation between X, and X2 . In practice this would be
estimated by a 2s3

2 /30 + b2sA2/30 + 2abr BSA/ 3 0 where

*If the increments are taken systematically from the lot then incre-
ments 1,5,9,...could be mixed to form composite 1, increments 2,6,10,...
could be mixed to form composite 2, increments 3,7,11,...could be mixed to
form composite 3, and increments 4,8,12,...could be mixed to form composite 4.
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xI
I (i2 2J xWl- Vi)

and aB2 and a 2 are as defined in Section 4.1.2 above. The variance of X

B A
would be estimated by a 2/4. A crude test of the difference between thec
two means would therefore be given by treating

30w2 %. + 30j•w 1

30w2 + 30wt c

[a2 sB2 + b
2S A 2 +abras se2J1/2(5

-•....30+ -i"-

as if it were normally distributed. If this doew not fall beyond 41.96 or
-1.96, we could conclude that it is safe to make the pooled estimate. If
the given statistic falls beyond ±1.96, pooling is not recommended and Y

alone should be taken to estimate the mean of the current lot.

The quantity r would have to be computed from the ortginal pilot
study data. If this Information is not available, then

30w2 % + !
22

30w2 + nw

could be used in place of X1 . In this instance a crude significance test
would be given by treating

i x
(5a)

B _

as if it were normally distributed, again comparing It with ± 1,96.

If there is a series of lots to be inspected from the stream of
coal, the mean of each lot that passes the significance test could be
pooled with the pilot study mean and other past lot means that have met
the significance tests. This pooled mean would then become the point of
reference with which the mean of the current lot (X ) would be compared.
The significance test would in this case be carried out by treatings

ooled - + 2PSooled M4ean 4••"112(b
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as if it were normally distributed, where form past means

30W2X + nwi• 1 Xci
Xpooled 30w 2 + mnw

L30w2

and for S and hL 30w2 -+mnw T0W2 + mnW

M
o2 2s2/30 + h 2 Es 2 /4

Pooled B iliac
Comparison would again be with ± 1.96, although owing to truncation the a-
risk would now ha less than 0.05. The basic variances are assumed unchanged.

4.3 A MORE GENERAL BAYESIAN PROCEDURE

An all around and somewhat more sophisticated approach an to how to
use the pilot study data In making inferences about the lot mean would be
to use Bayes Theorem in which the prior distributions are based on the
pilot study data. Our probabilities would now become rational degrees of
relief, but they would not be entirely subjective in that if the mathema-
tical procedure is accepted, the degrees of belief, i.e. the probabilities,
follow directly from the analysis. The procedure will be to note the
various likelihoods and prior distributions and then apply !.gee theorem
to get the posterior distribution for p, the lot mean.

We shall brgin by taking the composite mean X to be distributed
normally about tt,.. lot mean p with variance equal toc

01i2/w +a 2  2

/4 + 2r a /

If we set ax 2 
- o 1

2 /w + a2, this becomes

aX2  + o2

n 4

Then the density function for X given 1 is
c

(X - P) 2 /2 (a 2 + a 2 + a2)
c X r a

n + 'l/2 (6)

Next, let the variance of the four composites X be a 2 (X - )2/
ic c ic c

(4 - 1). The expected value of Sc2 will be
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4a 2
-Es 2) - + or2 + a 2 and we shall assume that 3U2 divided by

this expected value has a X2 distribution with 3 degrees of freedom.
Thus the distribution of se given the variances Ox2, or 2 and 2

Swill 
be

~~~~~~~2 h~~O2 ro2 ,K(2(4 "2)/2 exl322fo2/n] + C,.2 + 0,,21)
h(s2  2 , a2 02) K J 2 (7)

where K is a factor of proportionality. Since the two densities are
independent of each other their joint density will be the product' of
the two individual densities.

We shall express our deSrees of belief about prior distributions
as follows:

Prior distribution for .is proportional to -. e- - •0) 2 /20X2  (8)
aX

where 9 is the sue of the lot and u0 is the grand mean of the pilot study.
The assumption here is that the lots are merely large samples from the
stream of coal.

Prior distribuiion for sX2 is proportional to

-f0 (a 2) foxx, ox (9)
" ' •( ° 2) 1 + f x!2

where a 2 is the pilot study estimate of + or2 and f is the degrees
of freedom on which it is based. This is a con&ugate prior for the distri-S~bution of s2.

S~c
Prior distribution for r 2 is proportional to

-f (a 2)/2a 2 f /2
or or r Ca2) or1 +f /2 (10)

S2) or
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Prior distribution for a 2 is proportional toIa
-fo0 (a O 2 )/2a 2 ( 2)f/2

e a 2) 0/

These are similar in fotm to the density assumed for ) I2
The product of all the above densities would be the joint distribution

of the likelihoods and priors. Unfortunately the expression is too compll-
cated to handle analytically, It is possible to do something, however
if we neglect or 2 and Oa2 and merely include v and aX2 . Since or 2 and a 2

are likely to be small relative to c 2, the approximation may not be bad.
Confidence limits based on it will indicate limits &;hat are loss than
the true ones. They will offer a lower bound, however.

Proceeding as indicated, we would have, omitting non-relevant factors,
the following joint distribution of likelihoods and priors. (Note that
f and oa are now used instead of f and a since there is no longer i
need to distinguish pilot study variances.) Thus f(c 82, JA, a 2) would

be proportional to

- ,0220 22 ..39212(4a 2/n)- X (2)e C

ao /Vn O a ___ 2/n)4/2_ _ _
(12)

1H( 4 - 2/20 ox 2  -foOo2)/2X 2 f /2 ()7-X( "2)"1 + f 0/2- ' 0
X

where 2 is the pilot study mean and oa2 is the pilot study variance.0he0

If we integrate (12) over p, this leaves, except for factors not
containing a 2,

(rnY + Hp o)2 Lnec
exp - n + + 2 + 2- + + f°° 2

(,aX2)1/2 . (a X)l + f0/2. (4aX2/n) 4 /2

Set the expression in brackets equal to H, so that the quantity becomes,
except for factors not involving a.j,
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"-H/2oX2  -(fo + 7)/2

The next step is to integrate over Oa2. If we set X- H/C2 so that

do2 H - dx 2 , the integral becomes
X -Z7y d

6-X H-(fo + 5)/2 (X2)-(fo 3)/2 2

0

which is proportional to

k-(fo + 5)/2

The joint posterior distribution is therefore glven (exept for a
proportionality factor) by Expression (12) * Ht"fo +

To get the marginal distribution for V, which is the posterior
distribution of u., we integrate the joint posterior distribution over

a X 2 . The part of Expression (12) H H~O + 5)/2 containing X2 is

jn(~c ~2 + 3U&2 o% ~ia

(f 0+ 8)/2

If we set G'equal to the expression in the brackets and put X2  / Ox21
the integral becomes G 2

(fo + )/2 GX1)2 dx 2 which is proportional to

-.. '(f° + 6)/2 A ccordin8ly. except for a proportionality factor,

-I '(f° + 6)/2 in the posterior distribution of u.

Now G can be put in the form
SG IM + MoO fc o (13)
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2 2
rwxc M 0+ + MU 2 +~ f CF 2

where V + (14)-n +M n +M

f +6

Dividing by V and absorbing V in the proportionality factor, we have

2fU + ]2 + +o

a 0 2
G 2 is proportional to +

Since the above expression is of the form (•2 + 1)-, it follows

that the posterior distribution of a function of u (not v itself) has the
form of a t-distribution and that Bayesian confidence intervals for P can
be obtained from this.

nX + W

c 0

Thus the probability that

lies between -t 0 2 5 and + t 0 2 5 for f° + 5 degrees of freedom equals 0.95.

Hence the probability Is 0,95 that t lies between

c - ± v*f +53 t 0 2 5 for f + 5 degrees of freedom (15)

These are consequently the Bayesian 0.95 confidence limits for 14. The limits
given by (15) are tighter than the true ones since it will be recalled that
ar2 and a 2 have been neglected.

It is interesting to note that the sample size n appears in V in a
peculiar way. If we divide both the numerators and denominators of the two2I
terms of V by n, we get in the numerators the quantities MO No 2

n n

and f and in the denomiziat~ra M/n. If we increase n, M/n goes down
n MIA,, rui d

les rapidly than m or n and the reduction due toa is grtis.[n nn
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This verifies what should be the case, viz., that as n increases the
confidence interval becomes smaller. The same applies to fo the degrees

of freedom for the pilot study of a . Likewise for the lot size N.

Finally it should be noted that the analysis indicates that the lot
size M should be taken as the weiphting factor for P in getting the average
estimate of P. This stems from the special assumption that was made about
the prior distribution, viz., that the lots were merely large samples from
the process of size M and thus had a Variance of a 2/M. If the specialx
assumption about the prior distribution of u is that it is normal with
mean v 0 but with variance a 2 /M where M is an arbitrary constant, the
model would still bold. Inxeither case the weighting would be inversely
proportional to the variances, as would be expected.

_4.4 A COMPARISON OF APPROACHES
It is of interest to conclude with a comparison of the results yielded

by the formula of Section 4.1.4 with Bayesian confidence limits yielded byrformula (15). The comparison will be made by numerical examples.

Suppose that 20 increments of 50 lbs. each are taken from a current
lot to form a composite sample the measurement on which (X ) is 10. Suppose
that the random variance for 1 lb. increments (012) and th, trend variance

o( 2) have been estimated from a pilot study to be 7.6 and 1.2 respectively.*
And suppose another pilot study yields an estimate of the sum of the reduction
and analytical variances (sr 2 + S 2) as equal to 0.0465.* Then using the
formula of Section 4.1.4 above, approximate 0.95 confidence limits for the
mean of the lot would be . 76

-10 11.96 20 0.04561/

-10* 0.66

Suppose now that instead of a single composite, 4 composite samples are
taken from the current lot each based on 5 increments of 50 lbs. each so that
n still equals 20. Let the mean of the 4 composite measurements (X ) be 10C

and let their variance be 0.32. Let the mean of the pilot study data

) be 12 and let the size of the lot (M), measured in 50 lbs. increments,

*These figures are taken from the illustrative material given in the
ASTM standard Methods for Samplins of Coal (D2234).
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be 800 such increments. Finally, let the number of degrees of freedom (f.)
on which the pilot nttdy estimatc of the product variance a 2 Is based

be 30.* Then with the qame values for 6 1
2 , t2 and sr2 and aa2 as before

we will have 2 i2 . e+2 . 6a = - + 1.2 w 1.35
S -•-Ot2 50

and the 0.95 Bayesian confidence limits for the mean of the current lot
would be (according to formulas (14) and (15))

*The number of degrees of freedom f is derived by Satterthwaite's
approximation as follows: The pilot stugy referred to in the coal sampling
standard D 2234 yielded *a2 M 29.2 and a:2 - 1.3 (See Section 4.1.2 of this
paper). Ln deriving these variances, wl - 0.27 lb. was taken as the size
of the small samples and w2 - 10.6 lbs. was taken as the size of the large
samples. With w - 50, these figures yielded (in accordance with Section 4.1.2
above) a 2 0.27(1.00255)(e 2 2

2 --+ a 2 02)(A B
o 50 t 50

+ 1.00255 a 2 _ 0.002554 sA2 - ra2

where s 2 is the sum of the reduction and analytical variances. This can
be put If the form

a2 -0 .004725 2 + 0.9825s 2 -aa 2

Each of the estimates of variance was based on 29 degrees of freedom so that

the degrees of freedom for a 2 [following Satterthwatte (See A.J. Duncan,
Quality Control and Industrill Statist'.s, 3rd ed., p. 605)] was

(0.004725 Sa + 0.9825 m2 - ra 2)2

0(0.004725 SA2)2 (.9825 s82)2 (a 2)2
A + + ra

29 29 29

which with aA2  29.2, a 1.3 and s 2 - 0.0465, give. f - 30,
A B2 ra

-405



20(10) + 800 (12)
20 + 800 o25(30)

Swhere F2 3(20)(0.32) +
-I- 80 12+ 20(10)2 + 80)0(12)2 + 30(1.35)

° o"L 20 + 800 J20 + 80

4.8 + 117200 + 4.05-142.80 + 820 
"_

-4.8 +40. 45.3
-142.80 + 142.93 + 820 .13 +

This yields

- 11.95 t 2.044004 11.95 ± 0.15.

As could have been anticipated, the relatively heavy weighting given p as
3 compared with that given X causes the Bayesian limits to be centered closg to uo.

Further, the assumption thit the lots are merely random samples from the
process yields a prior distribution for the lot mean that has a variance
0 

2/M which for large M is small. This is what accounts for the much tighter
x

3 :confidence limits. With large M therefore there will be a marked difference
in the results yielded by the two procedures.

It is not necessary, however, for the validity of the Bayesian model
that the various lots be assumed to be random samples from the process with"a variance equal to aX2 divided by the lot size. As noted above it is

I T possible to view 4 simply as an arbitrary constant which expresses the
-A .assurance we have about the location of the lot mean. Thus, if we take

M - 80 instead of $00 as in the previous example, the prior distribution
for p will have much greater dispersion which means that our prior know-
ledge as to the value of P is much less certain. In this case, the
Bayesian confidence limits for the mean of the current lot will be

* .,* -20(10) + 80(12)• = 100 t025(30)
where 1 2 + 801)

+- 20(10), 080(12) +20(10)2 ++8012)2 45.3
100 100 100

- - 134.56 + 135.20 + .453 - .64 + .453 = 1.093.

This yields

- 11.6 ± 2.04 '0'.0512 - 11.6 ± .46

a result that is much closer to that yielded by the formula of Section 4.1.4S~above.



i

If now we do not wish to assume any prior knowledge regarding the mean
of the current lot (evcn the mean of the pilot study data is considered
irrelevant), but we are willing to assume a prior distribution for the

Svariance, then we can modify the Bayesian analysis by putting M 0. If

we do this, our confidence limits for P become

,X t2.•O4vX•20

where 2/4 + f 2
V= U

n

which for the example in hand becomes

V - 3 - 2.27
20

This yields

-10 ±2.04/0-.069 10 ±.52.

If we allow for the omission of the variances of reduction and analysis,
this is almost the same result as that given by the formula of Section 4.1.4.
The conclusion seems warranted therefore, that the formula of Section 4.1,4
is the practical equivalent of a Bayesian confidence interval when we are
willing to use the pilot study data to give us prior distributions for
the basic variancesbut are unwilling to make any prior assumptions about
the lot mean.
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PANEL. DISCUSSION ON BULK SAMPLING

Chairman: Waltc-r D. Foster, Biological Laboratories, Fort Detrick,
Frederick, Maryland

Discussant: Acheson J. Duncan, The Johns Hopkins University,
Baltimore, Maryland

Panelists: Boyd Harshbarger, Virginia Polytechnic Institute,
* Blacksburg, Virginia

Henry Ellner, U. S. Army Materiel Command,
Washington, D. C.

Gene Ray Lowrimore, Hercules, Inc., Radford Army
Ammunition Plant, Radford, Virginia

Joseph Mandelson, Edgewood Arsenal, Maryland

Vernon H. Rechmeyer, Thiokol Chemical Corporation,
Huntsville Division, Redstone Arsenal, Alabama

Since the host installation for the Fourteenth Conference on the
Design of Experiments has a special interest in chemical and other forms

/ ,• of bulk sampling, the Program Committee decided to have a group discus-
lion in this area of statistics. Dr. Walter Foster agreed to serve as
chairman of the panel and to select several experts to help him explore
this field.

Three papers on bulk sampling appear in this technical manual. The
preceding article by Professor Acheson Duncan, and the next two papers,
one by Joseph Mandelson and the other by Gane Lowrimora.

CHEMICAL SAMPLING

Joseph Mandelson, Edgewood Arsenal, Maryland

The problem of sampling of chemical materials has never been solved
on an overall basis and is not likely ever to be solved in this manner.
By an "overall basis," I mean the establishment of a standard such as
Military Standard 105 applicable to all materials which contain classi-
fiable quality characteristics and to which an AQL can meaningfully be
assigned. In the past, a number of standards have been prepared governing
the sampling, inspection, and test of chemicals (e.g., ASTM, AOAC, etc.),
but each standard is specific for one material and usually applicable to
only one type or grade of that material. Thus, an ASTH standard for
testing quicklime will tell you nothing about sampling of reagent grade
CaO. And that is as it should be.
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I believe we can handle the problem only by recognizing, in detail,
what our objectives are and by indicating what can be done to handle oaih
Yl! Uf 0ooJectlve.

First off, there are three general ideas which are of the greatest
significance in this area.

a. The concept of percent defective, which is basic to Military
Standards 105 and 414, and in terms of which AQL's are expressed, has
no meaning in connection with testing chemicals per so. Of course,
inspection of factors such as packaging, packing, and marking of
chemicals can be accomplished using AQL's and Military Standard 105,
but not the actual testing of the chemical.

b. Probably the most important characteristic to be defined in
planning chemical sampling is the degree of lot homogeneity required.
This must be determined within the framework of the actual way the
material is used and by the importance of the material in that usage.
Examples of this will be indicated later on.

c. While Military Standards 105 and 414 assume that no inspection
error occurs and their OC curves are plotted accordingly, the actual' Iexistence of error merely results in the translation of the OC to the
right or left depending on the kind of error made. In chemical sampling,
we have no OC curve (because the abcissa is a percent defective), but we
do have an experimental error which may or may not be large enough to
be significant. In-any case, the size of experimental error can be
determined (assuming competent testing personnel) and the causes thereofSascertained. In every case, the acceptance criteria met must reflect

the irreducible experimental error while the actual sampling and test
procedures must be hedged about with specified technical precautions
to hold these errors to as near these minima as possible.

Now, let us see how these general ideas affect the problem of
chemical sampling:

a. Military Standard 105 has appeared to many, if not most
Quality Assurance engineers like Lydia Pinkham's pills, a cure-all
for whatever ailments you have. They prescribe its use for anything
and everything - including chemical sampling and sampling for des-
tructive test. The small sample sizes contained in the S levels of
Military Standard 105 are particularly cited though unsuited for these
two purposes. For chemical sampling, the sample size indicated in the
S levels depends upon the AQL prescribed and, as already indicated,
AQL is rarely of significance in chemical testing. For example,
for lot size of 1000 (packages, I suppose) level S-2, Military
Standard 105 prescribes sample code letter C, which calls for a
sample of 3 for 4.0% AQL, a sample of 8 for 6.5% AQL and a sample
of 5 for all other AQL's. Of course, the allowable number of defects,
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which has ititle if any wieaning in chemlcal sampling, differs with
sample size and AQL. So what do we do? Obviously, we had best avoid
411ULItIg nIih LdL) ~,' Ld I %dl 1;;j 10L J 11 uL a4cu pMisA4&r, ýavu~ w,' u iSS*f

the specification. As an afterthought: suppose we write a specifica-
tion for technical grade acetone. This can come in any number of
commercial packages, trom >-gallon cans, 55-gaLlon drums, to tank
cans. Imagine using level S-2 or any other quote from Military
Standard 1051

b. Before we discuss the problem of homogeneity, I'd like to
point out that chemical tests are or should be specified for accomplish-
ment in replicate (that is, in 2 or more parallel determinations).

Results are expected to vary due to experimental error so it is
possible (and it frequently occurs) that one replicate will appear
to fail with respect to one or more quality characteristics while

others may meet the requirement. We usually allow the average to
govern. But this is not always spelled out in the specification.
Furthermcre, the use of such undeclared decision criteria ignores the
fact that certain requirements are far more important than others so
that the average, by it;.Flf, may be insufficient to insure a desirable
product. In fact, in many oases, an exact parallel exists with the
concept of classification of defects as used in sampling and inspection
"in accordance with Military Standard 105.

For instance, for a vaccine, acceptance will require that no living
virus be observed in any of the many replicate samples taken from the
batch, This corresponds to the Military Standard 105 critical defect.
Further, the number of units per gram or ml. of material is very
important since dosage depends on precise control of this figure.
It may be possible to admit of some variation such that one or more
of the replicates may be permitted to fall somewhat below the specified
minimum provided the average is not less than this minimum while the
variation, measured as a standard deviation, is not greater than some
prescribed maximum. This corresponds to the major defect concept. A
There may be additional requirements (e.g. specific gravity, etc.)
of lesser importance where the average alone may be permitted to
govern. These are equivalent to the minor defect.

We can see, therefore, that the more important the requirement,
the greater the need for the lot to be homogeneous and the more
stringent the evidence required to prove it. Also, you must now be
aware that the requirement for homogeneity stems from the way the
material is used and what it is supposed to accomplish.

By contrast with vaccine, let us consider FS: chlorosulfonic
acid - SO3 solution. The most important requirement is total acidity.

However, in its use as a smoke agent, if the total acidity were 5%
below the specified minimum, it is doubtful that you could see any
difference in the smoke it made. So this would be a minor characteristic,
even though it is the most important one, and the average of replicate
determinations on a composite sample would be sufficient to govern.
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In determining homogeneity, it is usually pna.1h1a Pn e-a
single characteristic, not necessarily the one which is of critical
interest, to prove it. Major characteristics require a number of
individual samples and replicate tests of each but all minor charac-
teristics can bw determined on a composite sample. With this general
guidance and your knowledge of the material and how and why it is used,
meaningful, economic chemical sampling can be devised. One way of
insuring a degree of homogeneity is to prescribe that product shall
contain material from not more than one batch of chemicals. The batch
is defined as that quantity of material manufactured by some unit
chemical process or subjected to some physical mixing operation in-
tended to make the final product substantially uniform. This is a
minimum requirement in production of a homogeneous product.

c. In all chemical measurements explicit consideration must be
given to the experimental error of the specified procedure. It is
frequently taken that, in a well-run laboratory, the most common
source of error lies in reading the instrument; e.g., 0.02 ml for
ordinary burettes, 0.1 mg for the analytical balance, etc. Any
experiencedanelyst knows this premise is highly optimistic and that
reading errors comprise only a fraction, perhaps, but a small fraction,
of the total error. Most important, however, is recognition of the
fact that the assumption of a constant laboratory-wide error is pure
fantasy, that every procedure has its own inherent error, and that
this is modified by the personal error of the analyst, sampling, and
the like. For this reason, specification criteria can be intelligently
and fairly established only when and if a valid estimate of experimental
error is provided. This is easier said than done.

If we want to determine the experimental error of a procedure, we
must ask whether this will be done under "ideal" conditions or under
those obtaining in an ordinary laboratory using "normal" precautions;
whether to use the most proficient analyst or the journeyman. Merely
to state the question is to indicate how difficult it is to implement
the decision.

So you see, there is no quick and easy answer to chemical sampling.
Each case must be considered by itself. Frequently, a roconisned
sampling standard for a material of similar characteristics may be
used as a guide but considerable technical soul-searching is required
before you snatch at this straw. The excellent specifications put out
by ASTM, AOAC, etc., are based on long experience with the specified
commercial chemicals but each refers only to the specific material
covered. They provide excellent guidance - but they are only guides
not answers to all problems.

The importance of proper sampling is stressed in many texts on
chemical analysis but the advice given is frequently ignored in practice.
It is veil known that a sample, improperly taken, can vitiate the results
obtained by the most competent analyst using the most sophisticated methods
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and apparatus available. Yet, in practice, because the actual preparation
of a sample usually requires considerable phymteal exertlon, the tesk is
allowed to devolve upon laborers, operating under vague, imprecise in-
structions which they understand imperfectly, if at all. For example,
what do laborers, indeed many professional analysts, know of the special

connotations hidden in the deceptively simple requirement "take a random
sample?" What do they know of the techniques and tools which must be
employed to insure true randomicity?

Ideally, the analyst will be thoroughly trained in the art of taking
samples, in seeing and knowing how to overcome the many unforeseen dif-
ficulties which arise in every sampling environment. Such a man should

take and prepare the sample himself, but this is rarely practical. As
an alternative, there is no objection to the expedient of having the sample
taken by non-professional personnel provided always they are ur1' r the

direct, personal supervision of a competent individual. Inde if they
have been suitably trained in every aspect of the task under the conditions

X they will face, the continual presence of -th6e supervisor may not be re-
quired, However, assurance must -be gli.it in all asethat thi indtvidual
taking the sample is himselfA.knowledgeable or that~h6 is acting in accord-
ance with the explicit instructions Of a competent person, preferably an
experienced analyst. All too often envir.-mental changes, not necessarily
always meteorological in nature, produce inditions not envisioned by the
specification writer, whichbmust-bs•.ovorcome to produce a proper sample.

• Only a competent, knowledgeable seupervisor-of sampling personnel can be
entrusted with the responsibility for devising necessary additions to and

modifications of the prescribed procedure (and documenting these) to insure
that a proper sample is taken in the circumstances.

"A- great weakness in many analytical chemists is their lack of
"familiarity with the statistical considerations involved in the phenomenon
of experimental error. This is not to say that chemists are unaware of
or underestimate the importance of experimental error. it is simply the
case that so many of them do not know how to handle it or even know it can
be handled. Fortunately, modern curricula have replaced old-fashioned,
inefficient statistics (e.Sg, average deviation, etc.) with more modern,
efficient concepts such as standard deviation but it remains a matter of

* concern whether sufficient emphasis has been placed on teaching the student
the dangers of bias and how to avoid them, the true meaning of randomicity
and how to effect it, the components of variance and how to calculate them
and, more generally, how to employ statistics in analytical chemistry.

Sampling error (as) is a significant factor in overall experimental

error. When determined as part of a factorial experiment, a will fre-

quently turn out to be surprisingly high as compared with other components
of experimental error. For this reason, the reduction of cs to a minimum

is an important factor in improving chemical testing. To effect this
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objective, it is essential to use valid statistical methods to determine

a so that alternative methods of sampling may be evaluated by quantitative

ditermination of a and that procedure adopted which has demonstrated the

lowest sampling erlor. It is interesting to note that normal statistical

test methods (e.g., analysis of variance) will not only measure o , but

will -eually identify the causes of error, thus furnishing leads is to

what can be done to reduce or eliminate them.
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COMMEN.S ON BULK SAMPLING

Gene R. Lowrimore
Hercules, Inc., Redford Army Ammunition Plant

Radford, Virginia

Professor Duncan, in his presentation, discussed compositing as an
integral part of the methodelogy of bulk sampling. My-coments will •
not be directed to bulk sampling, per so, but, -1 think they are pertinent!

to the question of what happens when we composite, or blend. Normally,
[ when we draw a test unit in a bulk sampling situation, we assume that

it consists of a very large number of, say, particles. In contrast, ifI the test unit consisted of only one particle, we would be in a discrete

sampling situation.

At Radford Army Ammunition Plant, we manufacture a nonber of cannon

propellants. The smallest identifiable unit of one ot these propellants
is a grain or fairly large particle, for example, .1" by .8". These
propellants are manufactured in a stream of batches and a large number
of batches are combined through a blending process to form a lot. Test
units are drawn from the lot and, consequently, contain grains from a
number of batches.
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Because a charge weight correction is made for every lot at firing,

the lot mean is of secondary interest to us. The within-lot variance is
our primary concern, since it is directly related to landing round aftar
round on target.

We have undertaken a mathematical investigation of the test-to-test
or within-lot variability in terms of the batch-to-batch and within-batch
variability. In our investigation, we assumed that the true value for
the test unit is the sum of the values for the particles asking up that
test unit. This assumption allowed us to exploit the analogy between this
situation and the situation in sample survey theory where we are estimating
a total from a stratified sample. We have some results for the case where
the number of grains in the teat show, Nt, is much greater than the number

Sof batches blended, N b.

We are currently studying the situation where N may actually be less
than N . All batches cannot now be represented in t~e test unit. We hope
to gail some insight into what happens to the within-lot variability in
this case.

These investigations have provided us with valuable insight into the
relationship between discrete and bulk sampling and what compositing does
in some bulk sampling situations.

• i i
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SOME STATISTICAL ASPECTS OF ASSURANCE OF STERILIZATION

F. H. Wadley
Consultant to Fort Detrick, Frederick, Maryland

In biological research, we often deal with assurance of sterilization
or disinfection, especially in microbiological work and in pest quarantines. I
We desire assurance that our procedures will give protection against sub-
sequent infection.

Often, we cannot be entirely sure of 100% kills; circumstances of
treatment may not be perfect, or the population treated may be very
slow in approach to 100% mortality. The probit transformation, widely
used in dosage-mortality studies, does not allow mathematically for 100%
kill, though it can be approached as closely as desired. Some well-
qualified workers in the mortality field prefer to define experimentally
a very small risk, which can be accepted. The assurance is then that
the probability of any survival is very small indeed, and that with
ordinary numbers treated, survival of even one individual will. be rate.
This viewpoint is discussed by A. C. Baker (1939). Ic seems more
realistic than speaking of 100% kill, and helps to keep preliminary
tests to a manageable volume.

For this reason, studies of assurance may deal in very low
probabilities; perhaps one survival in thousands or millions. The
probabilities are defined by preliminary work, which must obviously be
quite extensive and involve great numbers of individuals. Sometimes a

limited extrapolation to greater numbers or lower survivals is used.
It is desirable to be thorough in preliminary tests without going to
a prohibitive amount of work.

Very low percentage counts are involved, and these can be treated

as binomially distributed if care is used. The close relation of the
Poisson distribution to the binomial can be utilized with some gain in
convenience, where percentages are near zero or 100, and numbers are
large. For example, suppose an estimate of 3 per 10,000 average survival,
or a proportion of 0.0003. Using the binomial estimates of distribution
of survivals can be made from several terms of the binomial (0.0003 +
0.9997)10U000. the Poisson, distribution of survivals can be

estimated simply by expanding the Poisson with mean 3, or by looking
in published tables. This is true for survival estimates of 3 per
10,000; 3 per 1,000; or 3 per million. Student (1907) showed that the
binomial approaches the Poisson at its extreme proportions with n large.

A recent inquiry to the Physical Defense Department at Fort Detrick,
referred to establishing an assurance that chance of contamination be
not over 1 in 1 million. The material in question was a biological fluid
to be transported under stressful conditions. The frequently used method
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ot heat sterilization could not be used because heat would alter the
fluid. Filtration was to be used. The treatment is described by
Partner, Phillips, and Hoffman (1967).

Extensive tests were made with reusable and disposable filters,
dealing with large populations of Serratia marcescens. The best
filters gave no survival out of an estimated total of 240,000,000

' organisms in replicated trials. Referring to the Poisson, it is
found that populations averaging 3 will give an occasional zero; with
means of 4 or more, zero is rare. Thus, a tentative maximum of 3
passing per 240,000,000; or 1 for 80 million, is reached. If the
eirvivors average I in 80 million, and there are only 80 organisms
in the material, the chance of only 1 in 1 million is tentatively
reached. Other good filters gave occasional survivals of 1 or 2,
and seemed to be in the same class.

The material seems likely to have much more than 80 in a typical
sample. The solution reached was to use a second filtration, which
would msee to give ample assurance. This second filtration also aids
in.the question of possibly defective filters. An occasional defective
filter in a disposable lot, or a proven but deteriorating filter from
a reusable lot, is to be avoided. The second filtration with new
filterks from good lots seems to reduce this hazard to insignificance
without an inordinate amount of work.j

Another case of use of very small probabilities is given by Baker,

in'the case of fruit sterilization by moderate heat, to kill fruit fly

reaarn& the adults out, both in a check sample and in treated samples.
A graded series of time exposures was used, and tine was treated as
dosage in a probit analysis. Several thousand individuals per dose
were used, and probit values up to more than 8 were secured. The
lines were extrapolated to estimate dosage required for 9 probits
(3 survivors pr 100,000), which the author believed to be an acceptable
risk,
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RESEARCH AND DEVELOPMENT MATHEMATICAL EQUATIONS

AS RELATES TO AN ARMY AIRCRAFT SYSTEM

Tony N. O'Truk*
U. S. Army Aviation Materiel Command

St. Louis, Missouri I
ABSTIACT. This paper covers the life cycle of the Research

and Developmental Phase of an Army aircraft system. It also covers

the preparation of mathematical equations as pertains to the hardware

under the prototype aircraft, as well as the training, maintenance

support, and administration of the prototype aircraft system.

This article has been issued as Technical Report C/A 20-68

as of 11 March 1968. A copy of this paper can be obtained by

requesting it from the following address:

Cost Analysis Division
Directorate, Systems and Cost Analysis (Prov)
U. S. Army Aviation Materiel Command
Twelfth and Spruce Streets
St. Louis, Missouri 63166

*Mr. O'Truk is no longer at the U. S. Army Aviation Materiel Command.

His new address is BellevillaArea College, 2555 West Boulevard,

Belleville, Illinois 62221.
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HYPOTHESES TESTING AND CONFIDENCE INTERVALS FOR PRODUCTS AND QUOTIENTS

OF P .ISSC•1 ,Afl,•.,i ,ITN A'7 I.I..IJ 1JU KIML.AMLLL'"

Bernard Harris
Mathematics Research Center, United States Army,

The University of Wisconsin, Madison, Wisconsin t

ABSTRACT. X •X ,YI,2,. are k1 + k2 mutually independent

Poisson random variables with parameters ,lP2 ,.A.,•kl,,2,..,k 2

respectively. Confidence intervals and tests of hypotheses for the

parameter -1 X2 " k / k .U 2 .... Ilk are obtained. Under
1 2

suitable conditions these procedures may be used to obtain approximate

confidence intervals and tests of hypotheses of the parameter

S" PlP2 Pk / Pk +1 pk +2 "' Pk +k2 * where the

± - 1,2,..., k +k are binomial parameters. This problem is of
1 2

importance in reliability analysis and some applications to reliability

analysis are exhibited.

The remainder of this article has been reproduced photographically
from the author's copy. It was issued by the Mathematics Research Center
as MRC Technical Summary Report No. 923.
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HYPOTHESES TESTING AND CONFIDENCE INTERVALS FOR PRODUCTS
AND QUOTIENTS OF POISSON PARAMETERS WITH APPLICATIONS

TO RELIABILITY

Bernard Harris

1. Introduction and Summary. Let X1, X2, ... , Xk Y, I Y be + k
1 2

mutually independent Poisson random variables with parameters X ,

1ý'2P ... I9k 2 respectively. In this paper, we obtain confidence intervals for

the parameter e = X I2 ... kk/Vl2 k and the corresponding tests of
1 2

hypotheses. The required theoretical development is given in section 2. In

section 3, we examine the particular case kI 2, k2 = 0 because of the specific

nature of the answer obtained in this case. In section 4, some of the concrete

situations which lead to this problem are pointed out and some numerical illus-

trations are given. In particular, the reader should note that for k 2 r 0, the

parameter e is a product of Poisson parameters and the solution to the present

problem can be interpreted as an approximate solution to the corresponding problem

of finding confidence intervals for the product of binomial parameters. Estimation

of the product of bino-iial parameters has been investigated by A. Madansky r 21

and R. J. Buehler [1]. Their results and methods will be compared with those of

the present paper in section 4.

2. Determining Confidence Intervals for e . The Joint distribution of X1, X2 , ... ,

1 2fXkl;l'Y' '"YkZis given by

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-31-124-ARO-D-462.
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( (x..x ...... .x . V ...... v .. ...... L•' KI * " 4" " kz 1" 4" kl' I f" 2' " k p2',

22k kk

e TT)X/i TV J 1/yJ I
1 2

where >' >0, xi - 0,1i,2, ... , ± = 1,2, . .. , ; t.L> Q, yj- O l, 2,. . . , -- ',2, .. . ,k2

Assume kI > 0 . Then, let U =XI, and for 1= 2, 3,...,k define

Ui -Xi - XI; for J 21,2,...),k, define V, M Y + X I The joint distribution of

Up UU21  P V11 V2 ... ,.Vk is then given by

I 2!

(2) p1 (u , U2 -... , U ;VIP,3 ..,v v -
k 2 1 2 k 1 11 k.k . :4k

k' k2 2

U =P0i 1, 2...P , _ +1_u+2,. 2,3 k1;v M - 1 u+1, u+2, .u1 -1,- 1  ,-u 1 +2I..it,3..

Consequently, the conditional distribution of U1 given U U U
2 U2 0 U 3 u 3 P ..

Uk .Uk; V V V =V22, ... Vk= Vk2 is

8 h (u 2,u 3 ,, . u* k Ivlv 2 .*. Vk 2)
S(3) (u' ( lu 2u 3 u P...Uk I V.V 2

1 2 12
7, lT (u +ul) (v• u1=i2 :ivj "1l

where max(0, max (- u)) u < mn vand
2<1 <k _ _ l<J-<k n
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ki k

(4) h(uz,u 3 ,...,Uk ,Vl,V2,...,Vk ;e) = 5 '(rl T (ui +r)I 7T (v -r) 1)
2 r i=2 1=1

the sum running from max(O, max (-ui)) to min v In particular, note that
2<i<k 1<'jk-

the probability distribution (3) depends only on e and not on the individual X's

and V±'s Since the probability distribution (3) is a member of a one-parameter

exponential family,, one and two-sided tests of size a of hypotheses concerning

e can be written down as follows.

To test H: =6e0 against alternatives 6 >6GOP reject H if U k and

10 is 2Pu>k 0lU'3' 2 1v'' .

To test H:8 =80 against alternatives 0 <60, reject H if Ul k and
0r

-.6)Up 6  u u 3 , .u ,kVl, Z....Vk <a.

To test H:e =e6 against the alternwdlve 0 e0, reject H If Ul=k and

either

%7a) p6 (ulluz, u3 ,...,Uk , VV 2 , .i, Vk )v </2
ul<k 0 2

or

(7b)U -k P o(U IU 'U 3'''' ... l Vl'V ' " Vk2 < a/2 ,

ulak 0 12

The tests given by (5) and (6) are uniformly most powerful similar tests.

The test given by (7) is similar, but in specifying the right hand sides of both
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(7a) and (7b) as a/2, this will generally not be a uniformly most powerful similar

test. This choice is suggested for ease of computation, since the "optimal"

choices for the right hand sides of (7a) and (7b) will depend on (u 2 u 3 ,". ,Uk

VIPVz,...Vk ) . It should be noted that since P. (ul1u2 ,U3 ."' Uk lV 1 v2

2 ~01
., V ) is discrete, the tests given above actually are tests of size not ex-

k2

ceeding o In order to produce tests of exact size a, randomized tests will

usually have to be employed. The required modifirations can easily be carried

out.

Confidence intervals of confidence coefficient 1 -a can be easily obtained

for each of the above tests.

Upon observing U1 - k, the I -a upper confidence limit e2 for 0 con-

ditional on U2 -u 2 , U3  u ... ,Uk=Ukl~vI -Vl, V2 -v 2 , ... ,Vk =V is

0 sup {0 : p (u IuIu I
(8) k2  = sup { e : u p u3,... 'k l v2 . , k _a } •

U <k1

Similarly, the corresponding lower confidence limit 01 for 6 after observing

U =k is

(9) eI inf{O u2 (ul Uu ... u ,vl,V, ... ) I >}(9)_>k UO ?s3' kI 1''"vP]"2 _

From (7a) and (7b), we can obtain a two-sided I-a confidence interval

upon observing U1 = k by

(10) P{Ol(k) <0 <e 2 (k)} >1-

where
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•o A.k W -inf e: o-' _(u. ]u-.,u. . . u. v,,v.,,, . v, )> a/ 2}
U >k U L r. ~ I N2

and

(10b) 0e(k) =sup{e: , P (uluZu ... Uk ,VlV . .v )>a/2)u<k 1u1 32' k P k
i1-

If k= 0, then 0 = ( 21... and upon defining 0 =e the pre-
k

ceding tests and confidence intervals ((6) through (10)) are readily transformed

. to provide the corresponding results for this case. That is, let U1 = Y Ui-YI

i = 2, 3,... ,k 2 . Then, in precisely the same manner as before, we obtain tests

for 0 and confidence intervals for e which are completely equivalent to tests

and confidence intervals for 6 . These iacts are briefly summarized below.

The conditional distribution of U1 given U2 - u 2 , U3 = u3, ... , Uk2 -

is
*Ulh I u3 :a h

1 (uZ 3, ,uk;8

(I11) p,(u lu ,u 3 ,...uk = k ,u>max(0, max(-u1 )) ,

1 2 3 k
,2 2 e <i<k__u 1 i7 (ui + ul

ii

where
k2

(1) hl(Uz, u 3 ,...,Uk;) = r/[r T (u+r) 1,
2 r i=2

the sum running from max(O, max (-u i)) to oo . Then a size a test of the
2<i<k

hypothesis H:9 = 60 against the-alfernative 9 < 0 is given by the rule: reject

H if Ul =k and
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(13) p ,, (u1 u2u 3 ,...,u ) <•
u1- 0

where o 0 -

0 0

Similarly, a test of the hypothesis H.-e e against the alternative e > e
-4

is given by the rule: reject H if U1 = k and

(]4)L p ,,(u•ju 3,.,ukz) _•.
(14) u P (k 6 u u 2 U~ 2

Ul<k 00 2

Finally, to test H:6 =0 0 against the alternative E) e 0 , reject H if

U1  k and either

(15a) p * (ul uZu 3 ,...,Uk)<a/2

u_<ko1- 0

or

(15b) KC • (uIllUz, U30..U kz _< /z .
u >k 92

1- 0

Upon observing U1 = k the 1 -a upper confidence limit 9 for 8 conditional on

U2 = U2 , U 3 --u 3 , ... Uk =Uk is given by

*2 2

(16) e =inf{6 : k p*(ulIuz, u3,''' Uk )>a}
1 I >k 6-2

and 62 =

Similarly, the corresponding lower confidence limit 61 for e after observing

U =k is

(17) 9 = sup{e P (u I luu21 " 3 uk -
u uk8 2

and 91=/0*
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Finally, the two-sided 1 -a confidence interval upon observing U, = k is

(18) P{6 1(k)<6 <8 2 (k)}>l-c- ,

where

(18a) (k = sup(O* P *(uzU 3 ,... ) - a/2}
"u <k e

,1-
"and

(18b) e 2-M inf{: L p (uIlu 2) z,u 3 ,...,Uk 3> 12}

• Remark. When kI =0 we could also have proceeded by letting V1 = -Y1, Vj =

Y J -= 2, 3,... 3k 2 ; then the conditional distribution of V1 given V2 =

V, UV , V k2 wouldVdependon Rk only through 8 The... .. -v3 . .. 3= ko l de en 1n 112 1D • ...

tests and confidence interVals obtained by repeating the analysis leading to (3)

through (10) would give precisely the same results as (11) through (18).

3. Tests and Confidence Intervals for the Product of Two Poisson Parameters. In

this section we exhibit some specific properties of the particular case k 2

k2 = 0; that is e = X In this case,

ul
(19) po(Ulu 2 ) =( 8/(uI (u +U 2 )I h(u 2 ;0)), u1 > max(O, -u 2 )

where

(20) h(u ;e) - e(rl(u +r)i)
r=max (0, -u 2 )
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Define

I (t,x) = (9/ 2 ) v j , k~~~
v k=0 k(v+k '

where I (oo, K) = (K) Is the modified Bessel function of order vSv v

Then, if u>z0,

W0 -u /Z
h(uze) = /(ru +r)9-e I I 2 eqj2 -2'U 'r=0 2

and

t u _u2/ A

e 1(u2+u I - (t,2 2/' .e)

Thus, for t an Integer >0,

(21) P(u._< t -uz- (t, ZN/- )/I ' •

Similarly, if u2 < 0, let v -u 2 ; then

00
h (u2 ;O) -- 6r/(r(r-v))= L er+v/(r (r+v) e v/2 1v (2Nq

rmv r=O

Further

t ut t-v
e Iui (ul-VI)) = .v/ er/(r (r+v)!) v/2 (t-v 2

u I =v r=0

Thus, for t an integer >- u

(22) Pe=U_ t'u2 __ u2 1- (t+u 2 , zqe)/i.Uz(2q)
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Cujai~iia'u a1 ti-d 4~' 1 c ~ tri ki~t tin hi ne-.tirin nf TT (ivr~n

U =u is

Iu (t 2,J el/1 (2 Nr-), uz_> 0

uu >

(23) Pe{U 1-< tI j tU2})=u 0

eu 1-- 2
I I_U (t+u2,2Ni-el/I-u (2qi)e u 2< 0 I

2 2

where t is an integer > 0, if u 2>0, and an integer >-u 2 , if u 2 <0

It seems natural to name this distribution the "incomplete modified Bessel

function:. I
Returning to the tests and confidence intervals given earlier, the 1 - a upper

confidence limit 62 for e conditional on U u2 may be written

(Z4a) e8 -sup {e:Iu (k, 2•N)/I (2%ii)>a , u >0
2 2-

and

i~ri(24b) 62 supee:t I (k+u ,uA4B )/I20 (2(Ni) _> }, u2 < 0
2 2,

S~where k is the observed value of U1

The other confidence intervals and tests given in (5) to (10) admit of similar

representations, which will not be explicitly given here. In this case, it is also

quite reasonable to tabulate this distribution and we hope to produce such a tabu-

lation in the near future.

4. Applications . Despite the fact that the problem of hypothesis testing or con-

fidence intervals for the parameter 0 = IlX2 - k k l/L2 . k2' where
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"FC -r " i Para "_ _-.; Lae....

as a problem of interest in its own right, the procedures descrIbed In this paper

may be of more interest and will presumably be applied more often as approximate

techniques for statistical inference questions concerning products and quotients of

binomial parameters. We proceed to give some illustrations of this usage. Through-

out the subsequent discussion we shall assume that the relevant parameters of all

binomial distributions being considered are such that the Poisson approximation

to the binomial distribution is satisfactory to the user.

Consequently, assume that we have k1 + k binomial populaUons with ].T
parameters (nlp 1), (n2,P 2 ), '•" (n k'Pk) (n k +l'Pk+l1' (nk +20'Pk+Z)' " I

(nl respectively and that the mutually independent binomial random
1 2 1 2

variables X1, X2,..., Xkl, ll lz,.••,Xk ~k have been observed. Then, let
10: X2 fPkIXk 1 k 1 2 k k2P

•~~~ ( )p -- , P > 0, i = 1 2, .•.k l+ k z
•!Pk +IPkl+2 '.•' Pk +k 2 •

1 1 1 2
Replace nlip by Xi 1,2,..,kl, and for i k1+l, kI+2p k•Ik+k2 replace

np by , where J ai-kI • Then, assuming that X1, X, ... , k are

each approximately Poisson distributed, we have from (10),

(26) P (91 <' <9 2)•. gk2

This is equivalent to

k kI+k

(27) P(e 7T IP/ T"I np ~ l
I=11i 1 i=kl+l n < 2
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and from (27), we obtain an approximate confidence interval for p by

k +kP kI kl+k 2  k

(28) P{8 7" n/ rTni<p< 2  T7 ni/7ini-a
i=k +1 i=l i=k +1l

The process for getting approximate upper (lower) confidence limits for p is

quite similar to the derivation of (28) and will not be explicitly stated here. In

addition., in testing hypotheses, we clearly have that a test of any hypotheses con-

cerning e is an approximate test for the corresponding hypotheses for p

We now turn to some concrete illustrations.

In reliability analysis, a mechanism may fail if and only if each of k com-

ponents fail. Let E be the event that the ith component fails, i = 1,2,..., k

and assume that the event3 E are mutually independent. Then, the probability
k k k

of failure f P(n Ei) TT P(Ei) = "" p1  If each component is tested separately

in .n. Bernou-lli trials, and if the ptIs are "small" and the ni t s are "large",

then (28) or the equivalent formula for upper (lower) confidence limits for p

"applies. For this problem R. I. Buehler [I] gave a procedure employing a Poisson

approximation. However, Buehler's procedure does not readily extend to products

of more than two binomial parameters without introducing extensive computational

difficulties. On the other hand, for k > 2, the series (4) introduced in this

paper, whose individual terms give the conditional distribution (when normalized

by (4)), converges more rapidly than the exponential series and can be easily

evaluated in any specific case by hand computation. The individual terms can

each be computed recursively. A. Madansky [2] employed the likelihood ratio

statistic L(p) and used the approximate distribution theory, namely that
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-Z log L (p) has asymptotically the x distribution with one degree of freedom.

He compared this with the approximate confidence regions that would be obtained

by "linearization" methods. Madansky also noted that the application of the

asymptotic distribution theory for either the likelihood ratio statistic or the "linear-

ized" statistic is not too satisfactory for the case of very high reliabilities. How-

ever, this last concern is precisely what motivated the present investigation.

To see how one may obtain ratios (k 2 > 0), we state the specific problem

which was posed to the author. Let E,, E 3, E 4 be arbitrary events. A con-

fidence interval for P (E2 n E I EE) is required, which we write as

S(29p4) HE E E P(EI En E4  n E3 /P (E

Separate sequences of Bernoulli trials are conducted for each of the four factors in

(29). Thus, we seek to obtain a confidence interval for a parameter of the form

pP = p pp/p 1 , and (28) applies. In this illustration, we have k2  1; clearly,

the above illustration can be extended to exhibit experiments with other values for

k

Experiments such as the type leading to (29) are useful in situations re-

quiring very high reliability, inasmuch as the conditioning appearing in terms like

P( IE nl E n E ) may be needed in order that the probability of occurrence of~4 1 2 3

a failure will be sufficiently high so that a failure may be observable in a moderate

number of trials. In addition, this type of experiment may also be used to eliminate

the need for assuming independence in reliability problems, However, it does

introduce the difficulty of requiring conditional experiments.
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METHODOLOGY OF ASSESSMENT OF BIOCELLULAR PERFORMANCE

George I. Lavin

Terminal Ballistic Laboratories, Aberdeen Research and Development
Center, Aberdeen Proving Ground, Maryland

ABSTRACT. Our laboratory is interested in problems which are
concerned with the assessment of the effect of absorbed enerly on the
efficiency of performance of bio-ceilular systems as modified by the
absorption of external energy. The type of specific, non-destrictive
analytical procedures which are designed for this purpose and which
have been the subject of previous presentations to The Design of
Experiments in Army Research Development and Testing.,..are listed below.

MidroicaOvy - A'spectfum line,"(Mercury 2537 A*) is used as the light
source , for better optical-resolution.

.Sctros.opm -"A continuous'light'source (hydrogen dsachafe tube)
togethirwith s pectrograph of low dispersion. The combination allows
the detection and identification of. largsemolecules in a mixture.

Microsvectroscopy - Both sources are used. The line source for
miscoscopical structure. The cgntinuous source brings our abeorption
bandt deotils which- is- needed for compoUnd (amino acids etc. differentia-
tion and identification.

Model Simulation. - A tbree dimensional model is described which

simuiates the action of an animal whicb senses the presence of an object
and then reaches for it. Theamany unrealities of task performance of

'this model a&e pointed out. These include the lack of biochemical
reality which means no biochemical feedback with no replacement of
material as action performance continues.

Biochemistry of Tissue Systems - The relationship of specific task
performance to the chemical composition of the particular tissue system.
Subjects considered: Proteins, Nucleic Acids, Lipoids, Carbohydrates,
Polysaccharides, Enzymes, etc.

Bionics and Cybernetics - A consideration of the application of systems
analysis in relation to animal performance. Feedback effects.

Mechanism of Energy Absorption by Cellular Systems - An analog is
drawn between the origin of optical spectra and the amount of energy
absorbed by the system on exposure to ultraviolet, visible or infrared
radiation.
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Consequences of Energy Absorbed by Biocellular Systems - Initiation
of atom and free radical chain reactions which result in the formation
of wound tracts and stress. Levels of damage.

The last presentation was a summary of the above.
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MONTE CARLO INVESTIGATION OF THE ROBUSTNESS OF DIXON'S CRITERIA

FOR TESTING OUTLYING OBSERVATIONS

Jerry Thomas
Surveillance and Reliability Laboratory

Aberdeen Research and Development Center
Aberdeen Proving Ground, Maryland

ABSTRACT. An investigation of the effect of non-normality on the
distribution of Dixon's criteria for detecting outlying observations is
presented here. Monte Carlo techniques were used-to determine the
distributions of the Dixon statistics when observations are selected
from specific non-normal distributions with varying degrees of abnormality.
Two such distributions whose degree of abnormality, as determined by the
coefficient of skewness, may be varied by changes in the parameters of
the distributions are the beta and gamma distributions.

dptrA measure of the lack of robustness, that is the sensitivity to

departures from normality, in the Dixon criteria may be determined by
comparison of the frequency distributions of the Dixon type statistics
computed from sampling the non-normal distributions with those values
obtained by Dixon when sampling from the normal distribution.

Based on the distributions of the Dixon statistics computed from the
non-normal distributions, it has been shown that Dixon's criteria is not
robust and its wide use may result in incorrect decisions when the under-
lying distribution is asymmetric or skewed.

I. INTRODUCTION. After experimental data has been collected, and
before it can be analyzed, the observations must be carefully screened
to determine if they come from the same population. If any of these
observations appear to be radically different from the majority of the
other values obtained in the experimentation, it is necessary to deter-
mine if the suspect value is an extreme value or an 6utlying observation
(commonly called an outlier). By an outlier, we mean an observation that
did not come from the same population as the remaining values. In order
to do this, a knowledge of the testing procedures, the manner in which
the data was collected and recorded, and some prior knowledge as to what
the range of the observations should be, are very helpful in deciding
whether a value should be retained in the analyses or be thrown out as
an outlier.

To be consistent in this process. statistical procedures have been
developed to determine whether a value is an outlier or not. One of
these procedures was developed by W. J. Dixon (1). Dixon's statistics
have the advantage of being easily computed and are thus widely used in
applied statistics. However, Dixon's statistics were developed for
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F

normally distributed variates. The question was posed as to whether or
nnr fli nn's t-onarm n ~r ntstilarlawsara rnhiiat ae- .B th! 1-: mean
are the tests insensitive to deviations from normality. In order to
check the robustness of Dixon's test statistics, the coefficient of
skewness was chosen.to measure the degree of departure from normality.
Two distributions whose coefficients of skewitess may be varied by
changes in the parameters of the distributions are the beta and gamma
distributions. Thus, these two distributions were chosen to be used
in this paper.

II. TEST OF ROBUSTNESS OF DIXON'S CRITERIA.

2.1 Definitions of Statistics to be Investigated. The four statistics
proposed by Dixon for testing extreme values are defined below, where
the X's are the observed values from a normal distribution arranged in
ascending order such that, X1  X 2 _ X3.  . . . . . .. .  X 1  X.

For a single outlier, X1

....1.
r 2  1~Ca

10 [ -]
n 1

or for a single outlier, X
n

n n-
r [lb]

11

For a single outlier X1, avoidingjXn

X2 - X1
r (2a]

x -X
n-1 1

or for a single outlier Xn, avoiding X1

x 1x
Xn - n-_I

r [2b]xn - X
Xn X2
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For outiier AxV avoiding X2 and Xn

x3 -xI
X3 X1

r - [3a]
X -X
n- 1

or for outlier Xn, avoiding XI and Xn.T

n n -X
n n-2

r 2 1 = [3b ]
xn -X2

For outlier X1 , avoiding X2 , Xn_1 and Xn

x -X3 1
r 2 2  (4a]

• Xn-2 -1X

or for outlier Xn, avoiding X1, X2 , and Xn1i
n 2n n 1n.

x -Xn n-2
r:x [(4b]t. r~~22.. . .X X

n 3

These computations are widely used in applied statistics. One of
the main advantages in using these statistics is the ease with which
these tests for outliers may be performed. It is a simple matter, especially
for small samples, to visually order the data such that the values needed
for the test statistic, i.e., X1 , X2 , X n_, Xn, can be determined. Then

using these values, rJ, i-i is computed and compared to the critical value

listed in tables that are readily available. If r i- (the computed

value) is greater than R (the critical value), at the desired risk level,
q, then Xk (k - 1 or n) is determined to be an outlier with 1 - a confidence.

Since Dixon's critical values were derived using the normal distribution,
the question was posed as to how departure from normality would affect these
critical values. In order to investigate this, the Pearson Type I curve (2)
or beta distribution was chosen as the underlying distribution. This dis-
tribution was used with various a's and B's to give distributions with
various degrees of skewness.
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Dixon computed tne cistrIbutlon ot tne ratio, rj J-i

(Xn - X1) I (Xn - Xi) using the following function:

fj, m n1 -)f (t) dt f(x-v)

(i-l) (n-J-i-l)Zl Ct)

n-J-i-1 J-1

,f(t) dt • f (x-rv) f (x) x-rv f (t) dt dvdx

X-Vf

[ Where j -1, 2; 1 -1, 2, 3; v -X - X ;rv X X;X-X

f (t) - - e If instead of the normal distribution, the

beta distribution is used in [5], the following function is obtained:

S~1
~f (t) dt f (x-rv)

f ( (t) dt f (x-rv) f (x) f ( (t)dt dvdx
X-V xrv

Where j - 1, 2; i - 1, 2, 3; v - Xn - Xi; rv - Xn - X;X X n and

(ct+8+l)!
f (t) + t a (1-t)$.

It is apparent that this integration is very difficult for
sample sizes of n - 3 and becomes more difficult as n increases. In
fact Dixon used numerical integration for only a few sample sizes and
interpolated to obtain the remaining values. Thus, due to the problems
of integration and the fact that Mowchan (3) has demonstrated that
using Monte Carlo techniques for obtaining the dýstributions of the
rj, -1'i were very accurate, it was decided that Monte Carlo techniques

would be used in this paper.
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9 ~ ~ ~ ~ ~ i 9 nv~t~.iI Liei Lu use Monte CariQ techniques, it
was necessary to draw random samples from the beta distribution. Since
beta random numbers are not usually readily available in the form of
subroutines, the following method was used.

The Ballistic Research Laboratories Electronic Scientific Computer
(BRLESC) at Aberdeen Proving Ground, Maryland was used to generate a
random number, y, from the uniform distribution over the unit interval.
This uniform random number, y, was considered to be the area of interest
from a cumulative distribution, F (X). The cumulative form of the dis-
tribution was integrated from 0 to X, where X is the point on the distri-
bution that would define an area equal to y. For the beta distribution
this is as follows:

0 X 40

( + + 1) It (l-t)8  dt 0 4 X <.
F (0) al 0

V. thus

f:/X (a + a + 1)!
a a= t (1-0) dt

This procedure for generating X'i w s nee used to obtain samples of
size n - 6, 10, and 15 for this paper.

2.3 Determination of Critical Values. An extreme value may occur as

te either a high value or a low value. Thus, since the beta distribution
is generally not symmetric, it was necessary to construct test criteria
for testing either high or low values. To do this, both forms of
equations [1] through [4] were used.

Six hundred samples of size n were drawn. Each sample of size n was
ordered such that X <_ X . . . < X . Then using the appropriate X's

the test statistics were computed using each of the formulas to obtain
the rJ, i-l'a. After 600 rJ, i-l's were obtained for each test statistic,
the cumulative distribution of these rj, -l's was constructed. Various

percentiles were computed ranging from 10 to 99.5. These percentiles,
along with Dixon's percentiles from the normal distribution (4) are
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.CVI,, in 1.bleb 1 LILLUULA1 X11. These percentiles are given in termrain
C, where a is equal to one minus the various percentiles. Thus a is
equal to the significance level of the test at which the suspect outlier
is being tested, with the values in the tables being the critical values
at the given significance level. These critical values are tabulated
for rl 0 , rll, r 2 1 , and r 2 2 for both upper and lower tails using the

following parameters of the beta distribution with their skewness
coefficient, yl, as identification.

a y1

5 5 0
7 4 -0.24
8 3 -0.42
9 2 -0.64

10 1 -0.96
19 1 -1.14

3
These skewness coefficients were computed using Y1 = x -

3 3

Where E (x - ) '3 3' 02 + 2 ( .' For the beta

distribution

[(a+l1) ( + +2) (a + 3)1
E (x - J -

(a + B + 2) (a + +3) (a + + +4)

(a+ 1(+l ( + 2)3Y
(a + + 2) (a + + 2) + + 3)

(a +1

(a + + 2)+

and132

3~ + 1) + +2) + +1)2

+8a+ 2) (o, +8a+ 3) (a s ++2)j
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These values of a and ý were chosen so as to give various degrees
of skewness. When a - 8 then the beta distribution is symmetric and
the skewness coetticient is equal to zero. In order to minimize computer

time, it was desired to keep the sum of a + 8 as small as possible, since
as this sum increases, so does the computing time. However, it was desired
to get various degrees of skewness, thus a was increased and 8 decreased.
By choosing to do this, negative skewness coefficients were obtained.
Positive skewness coefficients could have been obtained by increasing 8 F
and decreasing a. However, the only difference a positive skewness
coefficient would make is that the skewed tail would be on the right
instead of on the left. Thus, if the skewness coefficients were positive
the upper and lower tail values would be reversed.

Since the beta variates range in value only from 0 to 1, the question
arises as to how sampling from a distribution which has an infinite limit
on one tail would affect the critical values. Thus, the Pearson Type III
Curve or gamma distribution, which has as its limits 0 to , was chosen.

The cumulative distribution for the gamma distribution is

0. X 0

1
fx Q•etBt.

F (X) = t X > 0d

with a> - 1 and • > 0. Since a change in 8 only changes the scale and
not the general shape of the curve, without loss of generality 8 - 1
was used with a - 0, 1, 2, 3, 4, 5. 71 was computed for the gamma

E (X -p) 3
distribution using Y1 W3

3

where
3

E (X -w) (Cx + 1) (u + 2) (a + 3) -

2 3
3(cx + I) 2' + 2) + 2 (C, + i)

and 3 + )3/2
=(c4 +3
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1 0 2.00
1 1 1.41
1 2 1.15
1 3 1.00

1 4 0.84
1 5 0.82

The same general techniques described previously were used. Again
600 samples of cizes n a 6, 10, and 15 were drawn from the ganma dis-
tributions. Both forms of equations (1] through [4] were used in
computing the test statistics since the gamma distribution is also
usually not symmetric but skewed.

The cumulative distributions of these test statistics were formed
and the critical values were computed for the various levels of con-
fidence. These critical values from the normal distribution for the
same levels of confidence, are given in tables XI1 through XXIV.

From the Dixon Statistics that were computed using the beta and
.,gamma distributions, it is apparent that for a given confidence level
the critical values in the skewed tail (the lowesritail for the beta
distributions and the upper tail for the gamma distributions) increase
as the absolute value of Y increases. Vice versa, in the tail opposite,
the skewness, the critical values tend to decrease as the absolute value
of Ti decreases.

The reason for this might be described in the following manner:

F Let us look at the Dixon test which uses the statistic rlO where

X -
r0 n-l for the test of an observation that appears to be

X... n - I

larger than .he other observations in the sample. It is obvious that
for r to become smaller, the numerator (the difference between the

largest and the next largest observation) must become smaller faster than
the denominator (the difference-between the largest and the smallest
observation). It should also be noted that for the beta and gamma
variates used in this paper the absolute value of y1 increases as the
variance decreases.
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Beta Distribution Gamma Distribution

2 2"Y1 a0

0 .019 0.82 6.0
-0.24 .017 0.89 5.0
-0.42 .015 1.c0 4.0
-0.64 .013 1.15 3.0
-0.96 .009 1.41 2.0
-1.14 .004 2.00 1.0

This can be intuitively demonstrated when considering the fact that
as the skewness increases, the distribution becomes clustered at
one end of the range of the distribution, with only a small portion
of the distribution lying in the skewed tail. For example, using
the beta distribution with a large skewness coefficient, let the
suspect outlier to be a value larger than the other sample observations.
Thus, the majority of the values are generally clustered in the upper
tail, close to the upper limit of one. It would, therefore, be very ;
unlikely for the difference between the largest and the second largest
observation to be very large. On the other hand, since the skewed tail
of the distribution goes to 0, it is likely that in a sample, at least I
one of the observations will be small in comparison with the other
samples. Therefore, when a distribution is markedly skewed, it is
expected that the values of rlO will be small for the skewed tail.

The critical values obtained using the-beta and gamma distributions
were compared to Dixon's critical values by using the Kolmogorov$Smirnov
statistic (5). The empiricai distributions were tested against those
derived by Dixon and the level at which these tests of equality were
rejected is 'given in tables XXV and XXVI. The distributions of the Ii

rj i were listed as not significantly different from those obtained

by Dixon for the normal distribution at the .10 level.

It can be seen for the beta distribution variates, that the
significance level generally decreases as the absolute value of the
skewness coefficients increase. For gamma distribution variates, the
significance level is generally .01 for all degrees of skewness. Since
the distributions of the r 's obtained using the beta and gammaJ, i- 1

distributions are significantly different from those obtained by Dixon
using the normal distribution, some examples are given to show how it
is possible to make the wrong decision in deciding whether or not an
observation is an outlier.

2.4 ExamPles. Suppose for example we had the following observation
from a beta distribution with a skewness coefficient of v. 6 -0.4241
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X, M .2319 X2= .6516 X3 = .7453

X w .7555 X = .8547 = .9690

46516 - .2319
Let X be our suspect outlier and using r 9690 - .239 0.569.

Comparing this with Dixon's critical value of 0.560, we would designate
X as an outlier at the .05 level of significance. However, using the

critical values in table 1, Lower Tail under y1 - -0.42, we see that

the critical value is 0.6085 at the .05 significance level. Thus, X1

would not be an outlier.

As the second example, take the 10 observations drawn from a beta
distribution with yl -0.64

.X 0.2306 X 0.3312 X 0.4317

X 0.4814 X5  0.5489 X 0.5806

X- 0.6548 X 0.6637 X9 * 0.73626

X 0.9701

Using r11  - as our test statistic, we test X to

10 2
see if it is an outlier.

.9701 - .7363 •
rll * .. .... - a .3660 I1r 1 .9701 - .3312 .366

Using Dixon's criteria, X10 would not be an outlier at the .05

significance level. However, using the critical value listed in
table VI, Upper Tail, under -0.64, we see that its critical value
is 0.3466. Thus, XIO would be an outlier.

For example three, let us look at a sample drawn from a gamma
distribution with y " 1.15.

X - 0.4790 X a 0.9628 X3 - 1.4398

X4 - 1.8540 X5 - 2,5660 X6 - 2.8963

X7 - 3.4193 X8 - 3.6188 X9 . 6.6278

X 1 9.0973
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I

X - X8 9.0973 - 3.6188

Using r 2 1 - to test XI0, we get r 2 1 = - 0.6735
X 10 X2 9.0973 - 0.9628

which is significant at the .05 significance level, using Dixon's critical
value of 0.612. However, using table XIX, Upper Tail, under y1 - 1.15,

we see that the critical value at this .05 significance level is 0.7514.
Thus, Xlo would not be an outlier.

As example four, take a sample of size n = 15 from a gamma
distribution with y1 1 1.15.

X = 0.2129 X2 - 1.1867 X3 - 2.3271

X- 2.7486 X5 * 2.8934 X6 * 3.0924
4 6

X - 3.4674 X - 3.6631 X9  3.8998
7 89

XI0 1 4.1009 X11 * 4,3123 X1 2 * 4.5184

XI3 - 5.6396 X 5.7802 XI5 • 6.0301

X -X3 1
Using X1 as our suspect outlier, and r 2 2 - - we get

x13 x1

2.3271 - 0,2129

r2 -0.3896. Dixon's critical value at .05
5.6396 - 0.2129

significance level is 0.525. Thus, X1 would not be an outlier at the

.05 significance level. However, using table XXIV, Lower Tail, under
Y " 1.15, we see that the critical value is 0.353. Thus, X1 would be

an outlier at the .05 significance level.

From these examples, it is easy to see that there are two types
of errors thAt can be made if the sample observations are not from a
normal distribution and if Dixon's critical values are used for testing
extreme values. These values can be called outliers when, in fact,
they are not outliers at the chosen significance level or they can be
outliers at a chosen signLficance level and not be so designated. Thus,
from these examples, it can be seen that the Type I or a errors, i.e.,
the rejection of the hypothesis when it is in fact true and the Type II
or 6 errors, i.e., the acceptance of the hypothesis when it is false,
are not what they are specified to be when operating under the assumption
of normaality when in fact, the observations come from a non-normal
distribution.
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111. CONLLUSIONS. It has been shown, on an empirical basis, and
using the Kolmogorov-Smiriinv goodness-cf-fit test that thoere i a
difference in the cumulative distributions of the rj, i-i statistic

obtained using the normal distribution as opposed to distributions that
are non-normal. These differences are usually significant at a low risk
level.

Also, it has been shown that the effect of departure from normality
is dependent on whether the suspect outlier is a large or small value.
Thus, it is necessary to have critical values for testing either large
or small values.

It is also evident that the degree of skewness of the distributions
affects the critical values. That is, these critical values tend to
depart more from those. values derived by Dixon for the normal distribu-
tion as the skewness increases.

For a symmetric distribution, that is, one for which the skewness
coefficient is zero, Dixon's criteria is robust. However, as the
distribution becomes asymmetric and the absolute value of the skewness
coefficient increases, Dixon's criteria becomes less robust.
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APPENDIX A

TABLES OF PERCENTAGE POINTS OF DIXON'S CRITERIA
FROM BETA AND GAMMA DISTRIBUTIONS
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TABLE I

BETA DISTRIBUTION

Nm 6

PR(r 10 >R) =

UPPER TAIL

a/y] D.C.* 0.C0 -0.24 -0.42 -0.64 -0.96 -1.14

.900 .038 .0435 .0378 90244 .0243 .0215 .0199
o800 .079 .0809 .0668 *0530 .0560 .0453 .0430

.700 .121 .1214 .1077 .0888 90895 .0713 .0694

.600 .164 .1639 .1427 .1280 .1226 .0972 .0908

.500 .210 .2089 .1827 .1650 .1596 .1250 .1214

.400 .261 .2479 .2147 .2083 .2011 .1600 .1507
e300 .318 o3109 .2733 .2572 .2486 .1923 e1972
9200 e386 .3703 .3399 .3271 .3112 .2429 s2686
.100 9482 .4797 .4280 .4260 .4180 *3201 .3663
.050 o560 e5756 .5043 94984 .5045 .4014 .4386
.020 .644 .6453 .6014 .5810 .5903 .5334 .5806
.010 .698 *6865 .7085 .6515 .6039 .5896 .6342
.005 .740 .7289 97444 e6716 .6124 .6304 .6601

LOWER TAIL

a /¥] o.C. OCO -0.24 -0.42 -0.64 -0.96 -1.14

.900 9038 .0353 .0376 .0537 .0474 .0530 .0508
.800 e079 .0753 .0837 .0997 .1074 e1137 .1130.700 .121 .1160 .1339 .1412 .1614 .1773 .1700

.600 e164 .1559 .1817 .1810 .2046 .2394 .2363

.500 .210 .1934 .2311 .2274 o2715 .3072 .2948

.400 .261 .2517 .2787 .2899 .3317 .3750 .3575

.300 .318 .3124 e3276 93418 .4004 .4369 .4164

.200 o386 e3667 .4079 .4253 .4729 .5135 .5203
.100 .482 .4637 .4975 .5363 .5555 .6045 .6258
.050 .560 95416 .5800 .6085 .6296 o6760 o6868
.020 .644 .6264 .6696 .7150 .7011 .7472 .7565
.010 .698 .6889 .7125 .7491 .7252 .7794 .8308
.005 .740 .7161 .7571 .8002 .7600 .8249 .8571
* Dixon's critical valuesfrom normal distribution
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TABLE II

BETA DISTRIBUTION

N a 6

PR( r 1 1 >) I

UPPER TAIL

c/y, D.C. 0.C0 -0.24 -0.42 -0.64 -0.96 -1.14

.900 .056 .0584 .0510 o0366 .0403 .0312 .0327

.800 ,113 .1074 ,0987 90861 90951 e0715 .0695

.700 .169 .1647 *1559 .1274 .1391 .1105 91109

.600 .227 .2192 *2007 .1786 .1815 slý19 .1500

.900 .288 .2746 .2538 .2356 .2334 *1961 o1994

.400 .350 o3419 *3087 ,3044 .3022 .2456 .2460

.300 .420 .4035 .3704 .3566 .3644 .3084 .3099

.200 o502 .4905 s4585 .4474 .4526 o3789 .3906

.100 o609 .6250 .5621 .5490 .5610 ,4838 .5049

.050 .689 .6865 *6345 .6513 .6272 .5957 .5934
.020 .763 ý7818 o7146 .7322 .7489 .6832 .7051
.010 o805 .8203 .8122 .7815 .7750 .7773 .7651
.005 .839 .8369 o8446 .8166 .8434 .8016 .8072

LOWER TAIL

a/yI D.C. O.CO -0.24 -0.42 -0.64 -0, 96 -1.14

.900 .056 .0460 *0557 s0724 *0660 .0681 e0660

.800 .113 .1022 .1144 o1332 .1387 .1468 .1411

.700 .169 .1602 .1765 91820 .2106 e2161 .2162
*600 .227 .2135 .2397 .2340 .2657 .2897 o2851
.500 .288 s2661 .2954 .2910 o3339 .3767 .3684
.400 .150 .,265 ,3516 .3610 .4186 .4453 .4443
.300 .420 .3929 .4192 .4332 .4873 .5155 .5095
.200 .502 .48C3 .5150 .5319 .5655 .5900 .5911
.100 .609 .5946 s6201 .6398 .6722 .6952 .7030
.050 .689 61859 .7093 .7371 .7336 .771q .7638
.020 .763 .7686 .7809 s8101 .8011 .8256 .8649
.010 .805 .8506 .8452 .8311 s8738 .8515 .8858
.005 .839 .8775 .8538 -8674 .8837 e8762 ,'160
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TABLE III

BETA DISTRIBUTION

Nm6

PR(r 2 1 >R) o,

UPPER TAIL

C'/Y1 D.C. O.CO -0.24 -0.42 -0.64 -0.06 -1.14

.900 .268 .2530 .2521 1961 ,1903 .1866 .1851

.800 .364 e3614 .3321 .2969 .2917 o2584 .2522

.700 .439 .4396 .3876 ,3703 .3668 .3238 e3145

.600 .504 o4966 e4634 .4430 94356 .3848 o3840

.500 .563 e5486 .5199 .5064 .5012 ,4401 .4571

.400 .621 .6162 .5842 .5698 .5623 .5203 .5176
.300 *680 .6797 o6412 .6450 96138 -5819 .5828
9200 o745 .7537.,7083 o7049 .7051 .6475 o6654
.100 .821 .8364 97992 .7836 .7985 ,7547 .7534
.050 .872 .8823 .8605 .8416 .8643 .B138 .8079
.020 .924 .9169 .9147 .9121 .9031 .8809 .8852
.0010 ,951 .9393 .9303 .9428 .9296 .9045 .9248
.005 .970 .9553 *9476 .9509 .9607 .9291 .9623

LOWER TAIL

a/y, ODC. OO.0 -0.24 -0.42 -0.64 -0.96 -1.14

gO00 .268 .2345 .2667 .2757 .2735 .2971 03122
.800 .364 ,34C2 .3803 .3781 .3768 .4300 .4151
.700 .439 o4195 *4617 .4685 .4729 .5388 .5003
.600 o504 s4802 .5074 .5290 o5405 .6001 .5748
.500 .563 o5359 .5682 .5941 .6000 .6595 .6428
.400 .621 .5951 o6332 .6491 .6739 .7254 .6994
.300 .680 .6662 .6688 .7174 .7263 .7639 .7544
.200 .745 .7398 .7476 .7819 .7883 .8168 .8161
100 o821 .8160 s8127 .8407 .8606 .8812 .8780

.650 .872 .8589 .8730 .8814 e9139 .9202 .9039

.020 .924 .9185 .9091 .9228 .9507 .9484 w9354
.010 .951 .9442 .9281 .9599 o9639 .9566 *9560
.005 .970 .9533 .9477 s9669 .9725 .9741 .9671
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TABLE IV

BETA DISTRIBUTION

N 2: 6

PR( r >R) m a22

UPPER TAIL

"/-(I D.C. O.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 .410 .4132 .3692 .3419 .3234 .3042 .3144

.800 .540 .5269 .4974 .4803 .4703 .4300 .4177

.700 ,640 .6116 .5838 .5869 .5654 o5550 .5145

.600 ,720 .6912 96613 .6578 .6406 .6316 .5943

.500 .780 .7548 .7273 .7213 .7002 s7059 .6815

.400 .830 o7981 .7816 .7806 .7682 .7799 .7467
.300 .880 .8577 .8445 .8,458 .8269 .8335 .8321
.200 .910 .9128 .8998 q.901 .8939 .8955 .8867
s100 .965 .9521 .9614 .9573 .9539 o9410 .9472
.050 .983 .9793 .9788 .97'16 .97,53 .9646 ,9757
.020 .992 i99C4 .9932 .9920 .9905 ,9849 .9921
.010 .995 .9972 .9959 .9949 .9966 .9912 .9966
.005 .998 .9985 .9968 .9961 .9982 .9960 .9984

LOWER TAIL

De/I D.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 .410 o3726 .4277 .4209 .3983 .4205 .4233
.800 .540 .4999 ,5369 .5539 .5300 .5921 .5606
.700 .640 .5979 .6289 .6390 .6321 .7011 .6735
.600 .720 .6793 .7110 .7135 .7088 .7608 .7423
.500 .780 . 7 60? .7588 .7731 .7876 .8263 .7979
.400 .830 .80B3 .8147 .8324 .6385 .8759 98523
.300 .8PO .85z3 o8721 .8861 .8806 .9082 .8990
.200 .930 .9026 .9160 ,9273 .9243 .9345 ,9366
.600, .965 .9563 .9567 .9630 .9664 .9678 .9690
.05 .993 .9786 .9796 .9820 s9878 .9838 .9872
.020 .992 .9903 s9901 .9909 .9941 .9926 .9962
34.0 .995 .9980 .9956 :9938 :9969 .9958 s9187
,005 9998 o9990 o9968 .9972 .9990 o9967 .9992



TABLE V

BETA DISTRIBUTION

N = 10

PR t10 >R )=
10

UPPER TAIL

/Y D.C. O.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 .025 .0267 .0210 .0173 .0157 .0119 .0123

.800 .051 *0509 .0384 o0379 .0325 *0223 .0249
,700 ,080 .0784 ,0596 .0552 .0523 .0346 .0348
.600 .110 .1054 ,0873 .0838 o0696 .0510 90462
.500 .142 .1354 .1158 .1107 .0894 .0680 .0579
.400 ,178 .1690 .1506 .1324 .1115 .0868 .0774
o300 .219 .2132 .1832 o1568 .1384 .1092 .1015
.200 ,273 s2611 .2252 .2079 0-734 .1372 .1269
.lO0 .341) .3340 .2841 .2550 s2326 .1881 .1762
o050 o412 .3791 .3471 92969 s2801 ,2283 .2115
.020 .483 .4545 o4109 .3813 .3385 o2882 .3081
.010 .527 .4923 .4359 .4154 o3773 .3249 o3437
,005 o568 o5219 s4626 o4232 o3968 o3566 .3624

LOWER TAIL

a/ •/1 D.C* 0•00 -0,24 -0.42 -0.64 -0.96 -1,14ý

.900 .025 .0252 ,0255 .0326 o0421 .0382 .0464

,800 .051 .0534 .0556 .0710 .0650 .0755 .0905
.700 .080 .0766 .0827 .1037 o1004 ,1140 .1280
.600 .110 .0941 .1142 o1413 .1391 .1527 .1829
.500 .142 .1209 .1470 .1823 .1823 .1957 o2286
o400 .178 .1555 .1763 .2211 92288 .2426 .2733

00 ,219 .1865 .2263 .2636 .2704 .3032 .3404
•2001 2713 .2446 .2718 o3163 ,3410 .3742 .4006
,100 o349 .3257 .3431 .3939 o4069 .4686 .4986
.050 .412 .3894 .4193 o4352 .4666 .5311 .5751
.020 ,483 .4486 ,4922 o5065 .552• ,5955 .6392
.010 .527 .4718 .5186 .5296 .5791 .6266 .6877
.005 .568 .4970 95596 .5513 ,6208 o6832 o6931
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TABLE VI

BETA DISTRIBUTION

N a 10

PR( r >R) -

UPPER TAIL

D.C. O.CO -0.24 -0.42 -0.o4 -0.96 -1.14

.'& .030 0322 .0273 .0222 .0234 .0168 .00151
1100 .063 .0597 .0457 .0479 .0432 .0296 .0333

.700 o09S .0900 .0753 .0747 .0672 .0472 .0496

.600 s134 .1261 .1091 .1063 .0896 .0693 .1659
,500 .173 .1621 .1400 .1343 .1158 *0884 .J842
-.400 ,2 .20C8 *1818 .1638 .1412 .1157 .1059

300 2.265 .2528 .2269 .2050 .1774 .1430 .1353
• 1ýO o325 *30A5 .2758 .2592 .2217 .1808 .1736
.100 .409 .38030 o3573 .3328 .2739 *2389 .2256
.050 .477 .4544 o4241 .3903 e3466 .2822 .2873
.020 .551 .5257 o4845 .4279 .4217 .3671 s3753
.010 .597 .5641 .5097 .4491 .4585 .3852 .3999
.005 .639 .5729 .5625 .5128 ,4911 .4312 .4262

LOWER TAIL

O/ C D,. 0,CO -0.24 -0,42 -0.64 -0.96 -1.14

.900 .0030 .0301 90304 .0384 .0489 .0429 .0531
8,00 .0663 .0649 .0664 .0820 .0762 .08468 0979

.700 ,098 .0932 .0999 .1166 .1157 *1237 .1421

.600 .134 .1149 .1364 .1672 o1615 o1696 *2022

.5G0 .173 .14b1 .1703 .2064 .2056 .2147 .2503

.400 .216 .1831 .2124 .2520 .2488 .2687 .3021
.300 .265 .23C7 .2662 .3031 .0093 .3333 .3672
•200 .325 .29i9 .3251 .3687 .3721 .3947 .429f
Go00 409 .3625 .4069 .4349 .4577 .4910 .5333

.050 .477 .4463 .4873 .5091 '5113 .5635 m6081

.020 .551 .5322 .5709 .5786 .6211 .6361 46765

.010 .597 .5748 .6072 .6099 .6770 .6800 .7071

.005 .639 .5951 .6521 .6374 .6882 .7080 .7297
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BETA DSRBTO

PR( r >R) u
21

UPPER TAIL

A/Y D.C. O.CO -0.24 -0.42 -0.64 -0.96 -1.14

.9001l .130 .1226 .31066 .1048 o0960 .074a .0676

.800' 189 *1804 .31653 .15.15 .1297 .1079 *l0b2

.700 9240 .2343 .2080 o1937 .1683 .1367 .1348

.600 .286 .2746 .2481 .2283 .2055 e1636 .1618

.500 .329 .3156 o2839 o2651. 2431 .1910 .1909

.400 .374 .3555 .3186 .3049 .2746 .2156 .2212

.300 .420 .4058 e3603 *3468 93179 *2532 o2529
,200 .474 .4608 .4158 a3938 .3556 .2986 o2062
.100 .551l .5420 .4953 .4719 .4269 .3809 .3605
.050 .612 .5987 .5534 o5296 .4894 .4334 .4193
.020 .678 e64594 .6264 .6133 s5712 .5145 e5279
.010 a.726 0'72 43 1.6717 .6282 o6346 .5731 o5455
.005 s760 .7353 .7402 .7318 .6637 .604'9 .5853

LOWER TAIL

O.C. 0 *CO0 -0.24 -0.42 -0.64 -0.96 -1.14

.900 .130 .1243 .1340 .1545 o1540 .1651 .2016
6800 .189 .1776 s1946 .2194 .2270 .2502 .2846

.700 .240 .2225 .2447 .2700 .2947 .311l .3384

.600 .2 ,86 .2643 .2940 .3213 .3425 .3595 .3917

.500 .321) ..3065 .3373 .3706 .3847 .4036 *4381

.400 9374 .3479 .3795 s4169 .4349 .4611 .4S9S

.300 .420 aL'ýC4 .4314 .4669 .4840 *5114 .5-375
'10*74 .4458 .4379 .5157 .5403 o5761 .5955

.10 .51..52a1 .5766 .5969 *6104 o6559 o6747

.050 .61.2 .54.6287 .62 6644 .7005 .72-,'
.C020 e678 .6381 .6877 .7063 s7140 .7462 .7662f
.010 .726 .6722 e7427 .7641 m7532 .7709 .8032
.005 .760 .7129 e7652 .7784 .8059 .8101 .8526
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TABLE VII I

BETA DISTRIBUTION

N = 10

PR(r >R) =
22

UPPER TAIL

"h/, D.(. O.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 .150 .1492 s1327 .1320 .1206 e0979 .0905

.800 .231 s2192 .1988 .1929 .1648 .1364 o1379

.700 e285 .2718 .2540 ,2325 .2058 .1706 .1768 I

.600 .335 v3194 .2960 .2783 o2545 .2096 ,2090
,500 ,384 .3690 .3398 .3158 .2935 s2432 ,2470
.400 .433 .42CI .3822 .3660 .3364 .2790 .2804
.300 .483 4613 .4251 a4130 .381•4 .3289 .3215 I
.2001 .543 .5202 .4925 .4752 *4291 .3657 .3765
.'00 620 6175 o5767 .5632 .5146 .4560 .4499

'050 ,56S2 :6593 .6439 .6220 .5922 .5046 .5078
.020[ .749 .7297 .7070 .6b96 .6801 .5705 .6303
.0101 .791 .7710 .7555 .7193 .7235 .6604 o6660
,005 .826 s8133 s7619 o7586 .7506 .6813 .6853 t

LOWER TAIL

__/Y1 D.C. O.CO -0.24 -0.4 2 -0:64 - 1296 -1.14

,900 ,150 1•428 1}538 *1871 ,1S02 ,1876 .2247

oK)0 .231 .2047 .2257 .2570 .2628 .2789 .3154
-.0 .2R5 .2575 .2845 .3086 .3224 .3378 .3778

.500 .535 .311.5 .3330 .3599 ,3800, ,3967 44246

.5 00 ,834 ,3593ý 93817 .4191 o4311 *.4448 .4786

.400 .433 ,40P5 4332 *4671 .4797 .4941 .5315
:Do 493 4613 94960 .5289 .53121 .5533 .5834

.2G ,5A3 .5220 .5408 .5744 5944 t)246 .6352
,!00 .620 .b032 .6407 .6538 .b724 .699)5 .7106
.050 .682 .6596 ,6928 .7115 .7212 .7431 .7680
.020 ,74) .7206 .7636 o7780 .7803 .7955 .8182
:010 .791 .7325 .7892 .8072 .8196 .8321 ,8528
.00ýt .826 .7565 .8023 .8214 .8609 .8578 .8757
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TABLE IX

BETA DISTRIBUTION

N 15

PR(r >R) sca
10

UPPER TAIL

c/y.1 0.c. 0.C0 -0.24 -0.42 -0.64 -0.96 -1.14

.)00 o019 .0172 .0167 .010o .0125 .0111 .o06q

.800 .040 .0365 .0353 .0202 .0269 .0206 .0136

.700 .062 a0565 .0496 .0364 .0379 .02B1 .0204
"600 .085 o0772 .0642 .0525 .0514 a0394 .0282
.,00 111, .1002 .0817 .0694 .0660 .0495 .0410
.400 .141 a1268 .1059 .0891 .0836 .0601 .0543
.300 .175 .1557 .1326 .1142 .1017 o0719 *0717
.200 .220 .1983 o1749 1.451 o1301 o0923 ,0909
.100 o285 .2527 .2277 .1912 ,1636 .1267 .1180
.050 .338 .2976 .2652 92371 .2018 o1599 .1.442
.020 .399 .3428 .3140 .2830 .2497 .2103 .1790
.010 .438 .3702 .3319 .3160 .2789 .2605 .1981
.005 .475 .4068 .3591 .3398 a2919 .2819 .2040

LOWER TAIL

/: 0i.C. 0.C0 -0,24 -0.42 -0,64 -0.96 -1.,14

.900 .019 .016.4 0211 .0266 o0280 .0318 .0290
-. 00 .040 .0366 e0418 *0461 e0503 .0619 .0676
,7O 1 062 ,0554 .0620 ,0738 a0802 *0870 ,108,
,600 .085 .0763 a0840 .0971 .1071 .1264 ,1511
e500 .111 .0960 .1123 .1255 .1432 .1744 ,2011

;.141 .1266 .1412 .1603 .1765 i2212 .2343
.300 .175 .1565 .1823 .2012 ,2216 .2607 *2q62
.200 .220 .2062 .2265 .2579 o2669 .3230 e3476
.1.00 .95 .2610 .3071 .3353 .3459 .3691 .4248
050 0.338 .3155 .3570 .3746 .3984 .4651 .41)9

.020 1.199 .3735 .4239 .4221 .4625 .531. .5524
.0".3 1.438 '3, ' 3 4390 .4543 .5034 .5651 .6045

:005 9475 ,4060 .4800 .5262 .5150 .6813 .6121
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IAL3LL- X

BETA DISTRIBUTION

N = 15

PR(r >R) n
11

UPPER TAIL

GI'/ D.C. O.0O -0.24 -0.42 -0.64 -0.96 -1.14

.,)ODU .023 .3ý205 .0194 .0127 .0149 .0144 .0053
. 6' .347 .0422 .0404 .0264 .0313 .0256 .0lb4
.700 .072 .0646 .0593 .0433 .0465 .0364 .0275
.600 .099 .0870 .0769 .0640 .0630 .0495 .0375
.500 .129 .1168 .0986 .0616 .08G0 .0611 .0530
.400. .164 .1439 .1267 .1043 .1006 .074• .0696
.$00 .203 .1773 .1583 .1359 .1225 .0960 .0886
.200 .253 .2278 .1995 .1741 .1535 .1182 .1097
.100 .323 .2809 .2606 .2258 .2025 .1603 .1472
.050 .381 .3313 .3062 .2687 .2566 .1938 .1897
.•020 .445 .4104 .3579 .3252 .2753 .2595. .2179
.010 .486 .4276 .3792 .3595 .3147 .3204 .2709
.005 .522 o4608 .3644 .3921 .3303 .3668 .2810

LOWER TAIL

/y1 0 ..C. 0.C0 -0.24 -0.42 -064 - 0.6 -1.14

.900 .023 .01'(8 .0231 .0291 .0314 .0329 .0326

.500 .047 .0408 .0458 .0525 .0560 .0665 .0764

.700 .072 .0627 .0704 .0821 .0863 .0944 .1163

.6301 .0919 .0885 .0931 .1075 .1170 .1384 .1609
6001 .12- .1132 o1259 .1408 .1569 .1867 .2126
., 3 .164 .*14 0ý5 .1622 .1771 .1940 .2314 .2476

.3O0 .203 .1773 .2090 .2237 .2340 .2797 .3048

.C0O .253 .23cS .2565 .2845 .:2o5 .3430 o3 u1±)
.•00 .123 929-13 4'3301 .3627 .3707 .4201. .445ý

.j -0 .18153451 .3863 .4089 .4316 .4803 * 5164

.07 .445 *40j3 .4513 .4624 .4890 . 56to4 .519.1

.- , 486 .4398 .4840 .4951 .5226 .5877 .6197
. 522 .4650 .5251 o5339 .5471 .6842 .6389

S• • i I i I I I ii I I I ii t



TABLE X1

BETA DISTRIBUTION

N a 15

PRIr >R)
21

UPPER TAIL

a&/Y, D.C, O.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 3094 .0850 .0788 40600 .0675 20460 .7398

.300 o138 .1317 1139 .0r22 .0946 ,0653 .0623

.700 .175 .1679 *1421 .`189 .4171 .0848 .0602
,600 o208 *1976 *1742 ,1449 *1390 *1073 61006

.500 .245 ,2274 9201 11694 41603 41278 31568
,400 C280 .2637 0 2255 - 2052 -1848 -1455 -1324

e!00 .319 *2909 82621 02322 o2168 .1736 .1511
.200 ,366 .3326 42988 14673 s2534 .2018 41779
e4600 2431 94038 23604 o3322 444 .2467 o2263
.050 2453 .4481 24069 23666 27391 32911 .2722
.020 25379.4925 26773 2 6163 *3869 .3444 *3145
.010 o574 5974 33 5111 3562 *4036 94908 43367
.2005 3607 35741 .5315 .4856 .4310 .4633 .3957

S~LOWER TAIL

Sa/y, 06C, O.CO -0*24 -0442 -0.64 -0*96 -1,14

.900 .094 3 0861 4 0867 4 1046 4 1161 4 1230 ,.1270
.800 ,138 41336 *1455 *1453 o1635 a1782 *2043
o 700 .175 s1649 ,1848 61874 o2050 .2328 *2500

.600 4208 45940 .2202 .2281 72444 .2830 63080
*500 .245 92232 o2545 .2717 .2758 43304 6 3568
.400 .280 *2553 o2861 ,3090 ,3154 *3731 .4031
*300 ,319 ,2974 ,3353 .3576 *3593 *4255 46435
.200 ,366 .3417 *3926 o4084 ,4171 .4739 ,5041
sl00 6431 *4063 ,4504 o4715 46780 o5378 o5812
a,050 ,483 .4523 o4822 *5188 *5337 o5837 .6307
,020 *537 .4950 o5491 *5768 °5846 .6532 o6842
.010 o574 a5309 e5883 o6181 .6237 .7050 07200
.005 .607 .5556 .6138 o6430 o6332 .7393 .7437

460



TABLE XII

BETA DISTRIBUTION

N = 15
4

PR( r >R=

22
UPPER TAIL

a/Y1 D.C. O.CO -0.24 -0.42 -0.64 -0.96 -1.14

Cloc .1.09 .0925 .0967 .0746 .0764 .0525 04E60
..0 .156 .1440 .1322 .1078 .1068 .0780 .0734

.700 .196 .19C3 .1623 .1356 .1373 .1007 .1001

.. 00 .234 .2172 .1988 .1660 .1617 ,129R .1194

.500 .273 .2522 .2291 .2004 .1820 .1504 .1371

.400 .312 .2864 .2633 .2319 .2113 .1744 .1586
-=00 .353 .3259 *2916 .2565 ,2484 .2012 .1801

.2,0 .402 .3661 .3305 .3084 .2888 .2325 .2120

.:00 .472 .4455 .3913 93600 .3457 .2859 .2669
o050 .525 .4975 .4657 .4032 .3860 .3402 .3047

0.020 .579 ,5352 .4990 .4545 .4375 .3985 .3508
.010 .616 .o5765 .5373 .4935 .4584 .4502 .3846
.005 .647 .6157 .5717 .5311 .4852 .5004 .4271

ay D..00 LOWER TAIL

a/y1 0.C. 0.C0 -0.24 -0.42 -0.64 -0.96 -1.14

.•900 .109 .0955 .0984 .1144 .1285 .1307 .1365

.800 .156 .1480 .1584 .1627 .1793 .1915 .2163
.700 .196 .1663 .2039 .2032 .2208 .2448 .2600
.600 Z .:;4 o2 .';2 .4455 .2512 .26;4 .303' .3192
.500 .273 .2472 .2773 .2965 .2965 .3497 .3757
.40) .312 .2874 .3153 .3343 .3435 .3968 .4224
.300 .353 .3243 .3577 .3773 .3864 .4484 .4671
.200 .402 .3755 .4292 .4353 .4437 .4944 .5239
.100 .472 .44L2 .4838 .5058 .5056 .5599 .5964
.050 .525 .4944 .5248 .5442 .5552 .6056 .6498
.020 .579 .5470 .5657 .6177 .6204 .6858 .7056
.010 .616 .5795 .6172 .6424 .6446 .7139 .7390
.005 .647 .5923 .6477 .6462 .6607 .7508 .7640

461



TABLE XIII

GAMMA DISTRIBUTION

Nu6

PR~r >R) -

10
UPPER TAIL

a/yI D.C. 0,82 0,89 1.00 1.,15 1.41 2.00

•)OC .033 .04b3 .0535 .0483 .0499 .07:7 .0710
.800 .079 .4023 .1137 .1025 .1047 .1339 .453
.700 .121 .1556 .1735 .1493 .1539 .,926 .2214
.600 4164 .2107 .2348 .1990 .2099 .2533 *29428

S.500 .210 .2622 .2922 .2576 &2709 .3179 .3687
.q00 o261 .3262 .3437 .3185 e3360 .3915 o4339
,330 .318 .4074 .4275 .3871 .4221 .4645 .5303
.200 .386 .4701 .4977 *4930 .4994 .5414 .61B2
.100 *182 .5695 .5965 .5875 .5885 .6302 .7130
.05" .563 .6702 .6773 .6616 .6507 ,7092 PO088
.020 .644 .7417 .7380 .73B3 .7249 ,7895 .8497
.010 .693 *7618 .7761 .8036 .7929 .6144 .8756
.005 .740 7854 .8056 @8274 o8434 .8408 .9024

LOWER TAIL

01/y. .C. 0.82 0.89 1,00 1.15 1.41 2.00

.900 6038 .0232 .0255 .0305 .0237 .0172 .0117

.800 .079 .0508 ,0529 ,0503 .0507 *0354 .022>

.700 .121 05573 .0556 .0792 .0714 .0546 .0359

.600 .164 .2096 ,1160 .4037 .0994 40823 .0518

.500 .270 .1452 91528 .1367 .1297 .1048 .5246
00 ,261 ,1B3O *1900 ,1699 *1679 ,1310 ,0R44

a300 .318 ,2255 ,2347 ,2119 *2044 ,1601 ,1262
.200 . 6 ,2874 *3101 ,2813 o2514 .21.17 .!F26
.100 o4P2 .3619 94029 .3748 *3469 ,2842 ,2574
.Ci0 .560 .4517 .4853 .4640 .4037 .3444 .1270
.020 ,644 .5573 .5556 .5464 .4859 ,4338 ,4t99
.01 O o 698 .6253 *5813 .5946 .5366 .4762 .5522
.005 .740 65444 .6919 .6367 *5852 e5325 .5828.

462



TABLE XIV

GAMMA DISTRIBUTION

Na6

PR(rt >R) =
11

UPPER TAIL

cc/Y DoC. 0.S2 0.89 1.00 li5 1.4. 2.00

. C50 . .56 .06:6 .0681 .0662 .0604 .0361 .0E41

.S00 .113 .1296 .1515 .1309 .1230 ,1632 ,1746

.700 .169 .1972 o2296 .1888 .1836 e2294 .2624

.6C0 .227 .2647 .3034 .2552 .2638 .3019 .3369

.500 .088 .3319 .3685 .310.2 .3240 .3668 .4211

.400 .350 .4058 .4345 .3839 o4211 .4559 .5027

.100 .420 .4766 ,5090 .4853 *5003 .5254 .5793

.200 .502 .5607 .5941 .5706 .5787 .6051 #6580

.100 o609 *6829 .7026 .6788 .6534 o7193 .7694

.Z50 .689 .7579 .7637 .7589 o7375 .7961 o8425

.020 .763 .7993 .8418 .8325 .8170,8323 .8971

.010 .305 .8220 ,8768 .8870 .8793 .8723 .9283
.005 .839 .8513 .9231 ,8995 ,9071 .8982 .9429

LOWER TAIL

D.C. 0,32 0.89 1.00 jo15 1.41 2.00

.900 .056 B033 .0448 .0452 .0383 .0304 *0219

.500. .113 .0747 .0857 .0758 .0728 .0615 .0426

.700 .!69 .1159 .1276 ,1136 .1162 .0959 .0661

.600 .227 .1665 .1775 .1584 .1552 .1260 .0875
:500 .2P8 .2147 .2187 .2069 .1947 .1646 .1288
.400 .350 .2773 .2885 .2608 .2510 .2135 .1726
.300 .*20 .32ei .3717 .3164 .3064 .2661 .2259
.200 .502 .3995 .4374 .4100 .3809 .3244 .2894
100G e609 .4970 .5627 .5121 .4744 .4176 .4128

.050 .689 .5893 .6559 .6126 .5625 .5347 .5008

.020 .763 .6855 .7403 .7372 .6683 .6351 .5640

.010 .805 .7770 .8347 .7731 .7477 .7134 .7671

.005 .839 .8150 .8578 .8318 .7666 .7767 *7840

463
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TABLE XV

GAMMA DISTRIBUTION

N=6

P|21>R

UPPER TAIL

./50 J D.C. .892 0,89 1,00 1.15 1.49 2.00

.900 .268 .3245 3152 2 30603 .3073.13450 .3612
.E00 .364 .4035 04553 .4153 .3940 .2439 .3033
.700 .439 .4917 *5220 3 4885 3 4939 25460 .5929
.600 .504 .5552 .5791 . 5604 3 5788 o6066 29730
.500 .563 .6211 .6967 .6314 .6475 26671 ,7118
.400 .621 *6830 .5526.6638 6949 5 7104 .7645

B.00 .680 .7453 17500 .7321 .7506 .7505 .8156
s200 .745 8105 .8004 s7991 .8102 .8164 86765
.100 021 78617 v8658 7 8671 7 8739 .8862 .*9252
.050 .872 ,8928 .8960 .9181 .9170 .9262 49512
.020 .924 .9231 89338 .9587 *9559 .9543 *9731
.010 .951 .9462 .9664 .9662 .9645 .9671 49761

• .005 .970 .9662 *9736 ,9742 ,9762 *9749 *9792 : }

S~LOWER TAIL

S/1 D•Ca 09 82 0,89 1*00 1 15 1•41 2,00

9 900 .263 •2056 *2025 .1843 .1913 •1522 *1044

S*800 *364 *2805 *2902 *2700 *2697 *2271 *IS46

7.00 .499 73545 93601 .3220 .3419 .9282 .2436
,.600 .504 *4161 .4369 .3836 4062 ,3366 42900

•..500 ,563 64761 94915 .4450 o4568 ,3923 *:477 I
,400 o621 *5448 s5526 .5163 *5193 ,4662 o4156
.100 .660 ,5998 o6l30 .5772 *5865 .5454 ,5002
.200 *745 *6813 °6846 .6611 *6599 .6267 •5766

.100 .821 .7765 ,7736 •7809 97838 .7386 0693

.050 s872 *8552 *8418 o8382 e8403 .3275 *7644

.020 .924 .9049 *8903 a8916 o9030 .8942 *0429
.010 ,951 e9487 .9164 *9160 o9385 .9153 .8824

*005 ,970 e9745 *9434 *9340 ,9568 *9253 09108

464



TABLE XVI

GAMMA DISTRIBUTION

• ~~PR% r22>R) -

LUPPER TAIL

D.C, 0E.2 0.89 1.00 1.15 1.41 2.00

.0ý .4"10 .4385 .4711 .4499 .4471 94684 .4S46
F001 .540 .5797 .5998 .5518 .)799 .6240 .6920.700, ,640 .6702 o6703 o6579 ,6811 o6939 ,7326
60O0 *720 *7426 *7385 o7329 ,7628 o7594 * 7916

:500 .780 ,7944 *7927 *7941 ,8161 ,0061 *843'2
4%0D .90 o8390 o8461 .0441 ,8592 *8495 *8825

.30C .880 o-8864 o8829 .8774 ,9023 o8867 ,9le0
:200 :930 .9310 o9182 ,9192 o9381 *9297 ,9498 .
*100 *965 *9679 *9 584 o9610 .9676 .9614 .9758
,050 *911 ,9813 o9818 o9819 o9166 99763 o9904
:020 *992 ..9933 ,9941 ,9933 .9955 99684 o9970
o 010 .995 .9950 *9974 .9965 o9976 ,9925 e9989
.005 .998 ,9980 09986 o9982 ,9984 o9963 ,9993

LOWER TAIL

•/ .C ,C 0,E2 0.89 1,00 1.15 1,41 2.00

.900! .4'0 .3562 .3423 .'2097 .3433 .2939 o2369
po0 ,540 .4840 e4730 .4327 .4763 ,4011 o3656

o70.0 .640 :5595 .5607 o5% 5637 94918 61
°600 .720 *63115 o6332 .6148 .6340 *5662 o5419
.500 ,780 ,6933 .7068 ,6868 *7082 .6477 o6276
o400 o850 o7679 o7657 o7516 ,7758 .7198 o7067
•010 oSPO o8276 .8247 oSI82 *8382 .7764 .770B

•200 .930 *88Z0 *8779 e@876 .8949 .8458 .8490
•olO .065 .9489 o9293 .9371 .9495 o918A .9180,

1050 .983 *9769 *9693 .9619 *9776 ,9516 .9628
,020 .992 o9898 *9902 .9647 o9899 *9780 *9909
.010O .995 o9941 e9944 *9921 o9947 *9902 *9962
.005 *998 o9978 *9979 o9990 .9966 s9922 s9980

465
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TABLE XVII

GAMMA DISTRIBUTION

N - 10

PR(r10 >R) - a

UPPER TAIL

D ,D.C. 0.12 0.89 1.00 1.15 1.41 2.00

.900 .025 .04C0 .0447 .0382 .0359 .0400 .0552

.R800 .051 .0759 *0817 .0747 •0821 .0842 .1190*[ 700 o080 *1069 *1221 vl2l0 1292 *1303 1723

.600 .110 .1504 .1631 .1635 .1807 o1827 .2259

,500 .142 .1924 .2021 .2054 .2273 .2380 .3019
:400 .178 o2377 .2461 .2672 *2770 .3U36 .3607
B00 .219 .2901 .1009 .3226 .3393 .3612 .4280

.'00 9273 •3608 .3814 .4021 .4184 .4436 4977
. o0.000 s349 .4319 .4715 *5030 o5276 .5359 .6162

a.050 &412 .5027 .5266 .5511 .5898 .6073 .6979
..020 .463 .5767 .6053 .6274 .6585 *6652 .7458
.010 527 .6351 .6357 o6589 .6819 .7121 .7671
I005 .568 e6445 .6862 .6882 .7243 "7281 "8013

LOWER TAIL

D.C. 0.82 0.89 1.00 1.15 1.41 2.00

.900 .025 .0i1• .u'79 .0163 .0150 .0096 .0033
.800 .051 s0362 .0347 .0299 .0289 .0204 .0077
.700 .080 .0532 e0517 .0447 s0393 e0303 .0130
.600 .110 .0741 *0726 o0621 .0560 .0426 .0202
.500 .142 .0983 .0918 .0840 .0721 .0550 .0277
.400 .178 s1229 .1168 ,.027 *0932 .0678 .0376
.300 .21.9 .1449 .1423 .1291 .1177 .08K6• .O,91
.703 .273 .1852 .1719 .1658 *.532 .1147 .0643
*O .349 .2420 .2291 .2301 .2036 .61)9 .0922
,050 .412 .3073 .2860 .2743 .2441 .2025 .1270
.020 .483 .3354 .3631 .3371 .2802 .2671 .1575
.010 9527 *36?9 .3993 .3774 .3394 .3120 .1735
.005 .568 .3690 .4483 .3974 .3512 .3445 s1835

466



I

TABLE XV1I1

GAMMA DISTRIBUTION

N a 10

PR(r 1>R) =

UPPER TAIL

S D.C. 0.82 0.89 ".00 1.15 1.41 2.0G

S.ýoo.030 .0435 .0507 .0438 .0405 .0422 .0576
...,00 :063 .0829 .0924 .0881 .0911 .0914 .1265
.700 .098 .1220 .1384 o1376 .1478 .1503 .5A02
.600 .134 .1678 .1839 .1986 .2006 .2009 .2346
S.500 .. 73 .2220 .2335 .2315 .252' .2624 .3059
.400 .216 .2675 .2791 .2944 .3105 .3234 .3745
.300 .265 o3275 .3404 e3551 .3797 ,3870 .4441
.200 .325 .3927 .4221 .4365 .4508 .4742 .5172
.i00 .409 .499' .5175 .5454 .5653 .5767 .6305
.050 o477 *5494 .5794 .6118 .6340 .6404 .7276
.020 .5ý1 .6458 .6443 .6619 .6952 .7094 .7714
.010 .597 .6959 .6893 #7169 .7348 *7278 .7P99
.005 .639 .72CC .7412 .7473 .7725 .7815 .8163

LOWER TAIL

0-y- OJ. 0.82 0.89 100 1.15 1.41 2.00

.900 .030 .0211 .0236 .0244 .0219 .0138 .0052

.800 .063 .0433 .0478 .0418 .0405 .0303 .0130

.700 .098 .0721 .0709 .0618 .0579 .0449 .0203

.600 .134 .0949 .0961 .0852 .0795 e0634 .0293

.500 .173 .1277 .1230 .1134 .1019 .0774 .0406

.400 .216 .1531 .1568 .1395 .1314 .0974 .05ES

... 00 .265 .1923 *1544 .!702 .16:9 .1231 e0760
.200 .325 .2469 .2304 .2106 o2081 .1624 .0970
..;0 .409 .3180 .3013 .2985 .2598 .218? .!421
.050 o477 .3803 .3769 .3358 .3127 .2619 s1858
.020 .551 .4277 .4634 .4714 .3633 .3816 .2323
.010 .597 .4716 o5:38 95006 .3858 o4028 .2945
.005 .639 .4994 .5336 .5449 .4244 .4391 .3072

467



I

TABLE XIX

GAMMA DISTRIBUTION

N a 10

PR( r21>R) a

UPPER TAIL

i/Y, ID.C. D.82 0.89 1.00 1.15 1.41 2.00

.900 .130 .1646 .1656 .1894 .*119 .2151 .2-75

.S00 .189 .2349 .2521 .2599 .2771 .3004 .3280

..700 .240 .2934 .3166 .3206 .3431 .3582 .3963
o600 s286 .3456 .3716 .3699 .3992 .4153 .4738
.500 .329 .3993 .4207 .4209 .4507 .4629 .5256
.400 .374 .4614 .4674 .4669 .5023 .5220 .5831
.300 s420 .5141.6 .5135 .5255 .5575 .5766 .6354
.200 .474 .5619 .5728 .5955 .6197 .6296 .6948
.. 00 .551 .6423 .6456 .6606 .698S .6931 .7689
.050 .612 .7103 .6878 .7209 .7514 .759. .8166
.020 .678 .7755 .7550 .7660 .7975 .8004 .8510
.010 .726 .7890 .7686 .8088 .8196 .8281 .8827
..005 .760 .8346 .7959 .8174 .8414 .8501 .8926

LOWER TAIL

ahy1  D.C. 0.82 0.89 1.00 1.15 7.41 2.00
111

.930 .130 .0923 .0986 .0933 .0886 .0763 .0351
.800 .189 .1290 .1306 .1301 .1222 .1028 .0567
.700 .240 .1743 .1726 .1617 .1580 .1286 .0749
.600 .286 .2048 .2055 .1931 .1818 .1484 .0935
.500 .329 .2401 .2408 .2230 .2185 .1749 .!:04
.400 .374 .2934 .2698 .2586 .25:2 .2067 .1335
.300 .420 .3387 o307: .2960 .2847 .2384 .1632
.200 .474 .3894 .3656 .3385 .3293 .288.3 .2006
.100 .551 .4510 .4429 .4116 .3876 .35aE .2569
.050 .612 .5099 .5048 .4791 .4468 .4288 .3124
.020 .678 .6164 .5888 .5640 .5054 .5024 .*3930
.010 .726 .6751 .6391 .6322 .5609 .5521 .4209
.005 .760 .7087 .6638 .6746 .6026 .5785 .4629

468



TABLE XX

GAMMA DISTRIBUTION

N - 10

Pk(r >R) = a
22

UPPER TAIL

C/y, 0... a.32 0.89 !.0O 1.15 l.41 2.00

.900 .150 .1946 .1882 .2198 .2127 .2404 .2424

.800 .231 .2716 .2816 .2954 .3122 .3273 .3561

.700 .285 .3300 e3548 .3544 .3766 .3911 .4527

.60C .335 *3056 a4138 .4109 ,4367 .4511 o5006

.500 ,384 .4480 .4672 .4622 .4943 .5039 o55Z0

.400 .433 .5000 o5147 .5179 .5503 ,5590 .6084

.300 .483 o5610 .5648 .5705 .6078 .6183 6648
.200 .543 .6192 .6214 e6285 .6685 *6670 .7226
.100 .620 .6881 .6870 .7081 .7353 .7484 .8329
• .620 .682.7500 o7348 .7662 .7907 .797 .8502
.020 .749 .8078 .8062 .8169 .8329 .8400 o8788
.010 .791 .8349 .8319 .8398 .8579 .8691 ,8999
.005 .826 .8810 .8597 o8527 .8708 .6870 s9082

LOWER TAIL

4/y1 D.C. 0.F2 0.89 1.00 1.15 1.41 2.00

.900 .150 .1140 o1258 g1198 .1159 .1050 .0523

.800 .231 .1697 .1653 .159S .1573 .1365 .0807
•700 .285 .2164 .2136 .2050 .2017 .1700 .1043
.600 .335 .2551 .2530 .2413 .2381 o1974 1?117
.500 .118 .3082 .2940 92795 .2698 92327 .1576
o400 .433 *35'0 .3303 .3239 .3092 .'6t6 .IP96
.300 .483 .4116 .3752 .3645 .3592 .30*6 .2214
.200 .543 .4624 .4388 .4222 .4082 .3638 .2674
.100 .620 .5197 .5175 .4883 .4868 .4433 .3542
.050 .682 .5994 .6095 .5649 e5460 .522) .4250
.020 .749 e6866 .6629 .6499 a6136 .5971 .5172
.010 .791 .72861 .7042 .7076 .o6519 .6555 .5i42
S005 .826 .8212 ,7063 .7444 .6746 .6745 .6113

469



TABLE XXI

GAMM:A DISTRIBUTION

N - 15

PR~r >R) a

UPPER TAIL

D.C. 0.82 0.89 1.00 1.,15 1.42. 2.00

.,Id .029 .0340 .0263 .0339 .0330 .0351 .0431
6ý00 *040 .0653 .0568 .0645 .0691 .0742. .0990
*700 .062 .0981 .0865 .0962 *1056 .2.184 b140:.
.600 .085 .1365 61201 .1361 .142.8 .1600 .1935
.500 *ill. 61749 .1557 .1760 .1857 92M3 .2409
.400 .2.41 .2189 .1901 .2211 .2293 .2570 o2970
.500 e175 .2586 .2425 .2756 .28631 .3162 .3707
.200 .220 .3140 .3159 .3358 .362.1 *3861 o4452
01-.00 .285 .3890 .3947 .4249 .4423 .4764 .5327
.050 933:8 .4499 .4646 .4354 .5055 .5561 .5910
.020 .399 .5068 .537* .509: 65535 .6232 .692.5
.010 e438 .5414 o5649 .5781 .5941 .6678 .7512
.005 .475 .5769 s5859 *6267 .62.26 .6997 .7628

LOWER TAIL

DsC. 0.S2 0.89 1.00 1.15 1.41 2.00

.900 .019 o0123 .0103 .0116 .0090 .0069 .0027

.800 .040 .0269 .0202 .0237 .0190 .0145 .0046
*700 .062 .042.6 *0315 .0370 .0284 .0214 .0376
.600 .085 .0578 .0433 .0511 .0394 *0287 .0117
6500 .111 .37C5 .0572 .0639) .0513 .0366 .01.61
.400 ..4!. .0893 o0751 .0796 90638 *0464 .0210
.BO0 .175 .1099 .0915 .0982 *0798 *0623 .0276
.200 .220 .1352 .120i .1226 .102.7 .0834 .03150
.100 *285 *182.9 .1564 .1598 .1349 .1108 .0555
.050 .338 .2208 .1964 .1900 .1681 .2.376 .0698l
.020 .399 .2813 .2480 .2407 .1.930 .1723 .1007
.010 e438 .31264 .2704 .2757 .2272 .19a5 .13,07
.005 .475 .3543 .2839 .2854 .2377 .2332 .1463
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TABLE XXII

GAMMA DISTRIBUTIGN

N *13

P(PR{ >R) - a

UPPER TAIL

a/y D.C. 0.22 0.89 1.00 1.15 1.42. 2.00

.900 .023 .03.E2 .0297 .0370 .0364 .037Z .0449
.300 .047 .0731 .O6OS .0693 .0759 .0795 .1003

.70C .072 .1114 .0964 .1O1l .1129 a2 48 .1472
,600 *099 ,15ý8 ,1.313 1494 e'.552 ,168ti *1982.500 .129 *1920 12674 1907 .1984 .2135 o2480

.400 .164 .2350 .2079 .2386 .2413 .2666 v3031
.300 .203 .2822 .2582 .2923 .3066 .3254 .380:
.200 .253 .3434 .3356 .3616 .3811 *4030 ,4518
o.200 .323 o4178 .4242 .4483 .4593 .4954 .5432
.050 .381 .4776 .4841 .5126 .5363 *5820 .5943
.020 .445 .5309 .5595 .5587 .5778 .6515 .7012
:V'.0 *486 .5796 .6098 .5988 .6237 .6976 .7572
.005 .522 .6138 .6292 .6508 .6413 .7217 .7703

•: LOWER TAIL

i ;/Y1 D.Ce 0* 2 0.89 1.00 1,15 1*41 2.00

.900 .023 .0171 ,0123 .0170 .0127 ,0100 ,0040800 .047 .0332 m0263 ,0317 .0244 .0201 .0072

:700 .072 .0525 .0406 .0465 .0365 .0295 .0117
.600 099 .3742 ,0536 .0632 .052C .0373 .0166

S500 129 .0923 *0715 ,0788 .0685 6050S .0227
400 •164 .1113 .0944 .1032 .0814 *06i3 .0300
:300 .203 .1350 ,1156 ,!261 .1019 *0801 .0376
.200 .253 .16o3 .1404 .'6590 .1335 .:C82 .0493

1.00 .323 .2210 .1935 .2005 .1745 .1436 .0719
050 .381 .277. 2433 .2453 s2067 .2.805 .1024
020 0.445 .3375 .2923 *2879 .2541 *216P *1290
01.00 :486 3841 3295 .308'. .2855 o2411. 1564

.005i .522 .4126 .3547 .3214 .3081 .2938 .1602
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TABLE XXIII

GAMMA DISTRIBUTION

N a 15

PR( r21>R)U

UPPER TAIL

c,/y, D.C. D.o2 0.89 1.00 1.5 a.4o 2.00

.900 .094 .1296 .1246 .1329 .1342 .1670 .*959
,00 o138 .1926 .1787 o1862 .1950 .2147 .2663

.700 .175 .2485 .2379 .2401 .2446 .2854 .3232

.600 ,208 .2833 .2831 .2902 .2852 .3337 .3916

.500 .245 .3251 .3251 .3409 .3353 .3896 .4286
,430 .280 .3726 .3746 .3919 .3928 .4392 .4771
.300 .319 .4247 .4228 e44100 .4493 .4884 65296
.200 .366 .4754 o4710 .4959 .5038 .5443 .5940
.100 .431 .5352 .5410 .5609 .5850 .6212 .6522
.050 .483 .5886 .5843 .6202 .6312 .6769 o7143
.020 ,537 .6353 .6808 .6645 .6677 .7445 ,771B
.010 .574 .6750 .7164 .6973 o7007 .1836 o7999
.005 .607 .7013 .7227 .7663 .7264 .7977 .8134

LOWER TAIL

D.C. 0.82 0.89 1900 1.15 1.41 2,00

.900 .094 .0658 o0593 .0555 .0521 .0432 .0172

.800 .138 .0979 .0828 .0829 .0785 .0630 .0262

.700 .175 .1293 .1077 s.058 .0967 o0770 .0368

.600 .208 .1529 .1303 .1283 .1123 .0944 .0451

.500 .245 .17'2 .1494 .1516 .1339 .1109 .0544

.400 .280 .1956 .1769 .1793 .1555 .:23 .0657

.300 .3'9 .2232 .2351 .2088 .1798 .1547 .0807
6200 .366 .2552 .2444 .2453 .2'42 o.1791 .0995
.100 .431 .32C3 .2918 o2936 .2512 .2271 .*160
.050 .483 .3573 .3419 .3273 .2859 .2554 .1594
.020 .537 .4169 .3777 .3612 .3589 92927 .2033
.010 .574 .4545 .4146 .4038 .3752 .3064 .2335
.005 .607 .5040 .4885 .4327 .4313 .3541 .2409
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TA7)LE XXIV

GAMMA DISTRIBUTION

N = 15

PR( 2>R)

UPPER TAIL

Y .0. C .- 2 0- S9 1.00 1.15 lo4l 2.00

.. 0 .10) .41'7 .392 .1421 a 14" : 6 83 .2030

:.-03 ,o56 21!r6 19ý)6 .2001 ,2051 .2515 e2746
.700 .196 .2607 2535 *2553 .2603 .2994 .3365
-o00 .234 .3077 .3045 .3086 .3051 .3530 .3)02
.500 .273 .34.9 .3553 .3630 .3563 .4116 .4359
.400 S!2 .39P9 .3939 *4093 .4136 .4573 .4979
a300 ,353 ,4520 .4514 .4647 .4764 .5096 .5404
.200 .402 .5061 .4996 .5249 .5339 .5694 .6056
:400 .472 .5717 .5665 .5886 .6150 .6459 .6776
.050 .525 *6190 .6294 .6390 o6528 °6980 .729S
.020 .579 .6732 .6866 .6936 .6967 .7551 .7765

0 0 616 ,6985 ,7294 .72E7 o7269 .7926 .8036
.005 ,647 .7514 .7752 .7781 .7348 .B19 .a178

LOWER TAIL

D/y. O.C. 0.32 0.S9 1.00 1,15 1.4;1 2.00

.900 .109 .0736 .0735, .0649 .0636 .0537 .0223
00 J.156 .11.79 .1022 .1018 .00X9 .0755 .0156

.19 *5t1 .283..278 .1137 .0992 o0474
.600 i.)34 ,765 -524 .1541 .1357 .7ý .05, 9
.50 .273 ,19,)3 1.2764 .1592 .1364 .0720
-*30 .1.3 .22261 .2150 .2087 .4327 .1616 .046
10 .0 .2577 .444 .2402 .2171 .,1870 ,1C23

.20C; .402 .3027 .2316 .2823 .241)3 .2134 .1256
:'3G .*72 .3617 .3478 .3447 .2377 .263= .152Z
.050 ,525 .42.6 .3S•+ ,3843 ,35`0 .3014 .190S
:,2c 1.579 .4701 .4433 .4280 .4177 .3656 .2501
.:,-C .616 .5227 .s400 o.4676 .4403 .3855 .2833
.oG5 °647 .5442 .5258 .4969 o4579 .4055 .3124
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APPENDIX B

TABLES LISTING SIGNIFICANCE LEVEL AT WHICH

BETA AND GAMMA STATISTICS DIFFER FROM

NORMAL STATISTICS
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T :iL,- X',/

KOL•CC,.p', V-S'.'[ '0 .r,2D.' SS-ZF-FIT TEST RESILTS

Y1 C, -. 24 -.- L2 -. '--4 -. - . 4

UPP'.A TIAL I

r ;S. .0 1 .0iOi .ci1 .01.

.05 .01 .O .01 .01 .0.
22

LOVER TAIL

l, :.s. N.Ss I.S. 10: .0: .0 "
r . S.S .01 .0O ., .01rl " S. \.S. -No.S. .a o .SN

22

LUPER TAIL

r N .. j1 S .I So .0 1 .t , 0 . 1,

22 S .S0 .01 .01 .C I

ll'l LOWER TAIL LE E l

Cl NS, .,1 .01 C,0 I Cl

r21  NO*-0 0 o

* r2 2  . N.S. .O' .01 .0i c 1

UPPER TAIL"

i 1 D.X ,1 V 0A C 0 1S
.0 C 0

LOWER T•ILL
rl C3 N.S. 05 .~: . : j

C, . 5 %. S. %.S. . 1 .; O
r 1 .0 .N!. S. .• .O o. . .

r2 * '.o NGS. .05 ' o k ., 1 .Oi

N: ,S. :"FT1,.;: Nl-.T SIGNIFICANTLY DIFFERE;'iT
F;<iX DIXON'S VALUES AT ,lC RISK LEVEL OR LOINFR
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1<L-'OG.Y0'V-SM'I *.i-c'V rCcJOr,`SS-OF-F1T TEST RESULTS

Yj0.S2 C.P9 1 .3 "..15 1.43, 2.00

N 6

UPIDER TAIL

0 u 0 .01 .01. .01 .01-

r22  .0 .01 '01 "S .05 'NJ.S.

LOWER TAIL

r-~ 0 .01 .01 .01 .01. .01
C.1 .01 .01. .01 .01 .01

"N10

UPPER TAIL

Sj 0, .0i .01. .01 .01 .0i

.0 1.01 .0, .01. .01 10.

LOWER TAIL

r.01 p! 01 .01 .0 .01 .001

r,1 *01 .01 .111 .01 .01 .01
r22  .01 .01. .01 .01 .01 .01

N a is

C2..01UPPER TAIL .0

.01 .01 .0! .01 .01 .01

r"~ ~ ~ OE TA O .1li Li 0

r ' .0! .01 .01. .01 .01

r2  (11 .01 .01 .01 .01 .0-

~' 'J.S.~A LOWER TAIGNFCLY 1FRN

L Oi
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APPENDIX C

MACHINE PROGRAMMING OF DISTRIBUTIONS

b4
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JERRY THOMAS B ETA OISTRIOiUTION
EBLOC(RR-RR6OO)

BLOC C CQ-00599 )HH-HH599 )BB-885991$I
BLOCLCC-CC599)OD-DD599 )EE-EE599)j C(ZZZ3O)Z- 1Z3)

BLOC(N1-N80)YI-Y40)GGI-GG400)A1-A40)B1-B40)$1'
SYN (X1.N2)GXnGGI)GY-GG1O1)GZ:GG2CJ1)GWUGG3O1)

START ENTERCSETDPO)
REAOCRCC)$ ENTER(CVFTOI )(RCC) IRC)
ZZZ=.90$ ZZZ1:.80S ZZZ2u.70$ ZZZ33.s60S ZZZ4=950
ZZZ5m.40S ZZZ6uo30$ ZZZ7m.20S ZZZ8=*1O$
ZZZ9.*05$ ZZZIO=*02$ ZZZllssOXS ZZZ12u*005$
SET(HP=l)W*l5)G 0)$

AGAIN READ-FORMAT(H)-(80)NOS*AT(Nl)s STOR-OS
INC(CHPuHP41) S
NEX=O9$ ENTERIPRINT B)
MMmOS MMM-OSSET(WWaO)$ ENTER(PRINT B)S
ENTER(ZEROCC)$ SET(ALPsALPl)CBTABSTA1)S

ALPHA SETCK*O)LuO)$ EPSw*OOOO1S
1.0 NmN1,K$ XK1,tK$ DmC$ IFCX<100)GOTO(l.1)S

IF,(N-X<2)GOTO( 1.1) $ YuX/Ns GOTOC 1.7)
I. Al . A/N.1) S B1slC-X+1$JuN-)C$Ix1$INT(RL3WRB*RA)$

BRLESC$38(RFS) /OOMt'M) (RB)$
ENTER( CVXTOF )(CRB)(CR)

14. IFIB>J)GOTO(lo3)S
A=A*R/C4 BmS+l$ CaC+1$ GOTOC1,2)

IF(Y<O)ORCY>I)GOTO(2o3)

!*41 SS=EXPCX*LOG(Y)+J*LOG(F))
DuDalS IF(D>5O)GOTCC2sO)
IF( 0>47 )GOTO 2. 1.

.o43 [F(Y>,95)GoroC1.8) ~
SNSO:SS*Y/CX+I)$ Iil

1.5 I(=+)I~r(OIGT~h6
SXS*YY( J-I1+ )/CX+I41)
SOmSO+Ss laY~l$ GOTO(1.5)

o6GOTOCIALP)$1
ALP3 ETaISO-A*R)/SSSIFCD>2)GOTO(l.61)S ET*ET/2
1.61 YsY-ET$IF(Ymsl)WITHIN(.OQQ1)GOTO(l.7)$

IFCY>1 )GOTO( 2.4)
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1,65 1 F- ARS f T51FOc mrTA 1./2
..7 [P(Y>!UGOTO(2.4) S Y1,LaY

[NC(K=KP2)t $NCCL-L+11)

IF-INT;L<STOR~)oro (1.0)$ INC(RESC=RESC+l)
SET( M ~=0

COUNT(W)IN(M)GOTO(1?.8)$ SET(Ma0)S
T.STFWD TFCY1.M<=Y2,?1)GOTO (10.22)

Y50=yl,vY$ Y1,14aY2,V$ Y2,MjmY50S PA-M
10944 IF-INT(P=0.GOTO(TSTFWD)S I NC(P=P-1)

IF(YiP<=Y2,P)GOTO (TSTFWD) $
Y5OUYlP$ YlP=Y2,PS Y2,P=Y50S GOTO(10.44)S

.'0*22 COUkNT(W-1) IN(M)GOTO(TSTFWD)11 QOtWW=(Y9W-Yt(W-1))/CYW-v2)$
BF~,WW=:YvW-Yt(W-2))/(YtW-Y2)%

HH, WW2 CY2-YI / V, W-Yll!;
EEWW-(Y3-Yl)/CY, (W-2)-Y1)
CCtWW=(Y3-Yl)/(Y, Ii-1J-Yl)$
DDOW W*(CW-Y I W-2) )/( YW-Y3)
RR#WW=(Y2-Yl)/CY#(W-1)-YL)$ INC(WWoWW+1)$
IF-INTl RESC<RC)GOTOiALPHA) J

:1*55 ENTER(CVITOF)(W)CFO).$DID-MM/(FQ*600)$ 4

SI~m(FQ*600*MMM-MM*MM)/(FQ*600(FO*600-1) )$

[F-INT<MLN= >DID<.) VAIANCEL >SID

IFLOO,L<wQQ1,L)G0TO( 3.0) S
Y5O=0QvL$QO,LvQQltLS OQIL=Y5Os GOTO(3.1)s

3.22 COUNT(599)INCM)G0TOC3*0)
ZZtG=Q059$ ZZl9GwQQ1195 ZZ2,GuQQ1)S ZZ3tGzQO239
ZZ49GQ00299$ ZZSGrnQQ359$ ZZ6,Gm'QQ419sZZ7pGwQQ479
ZZ8vGx00539s ZZ9#G=QQ569$ ZZlOtG=QQ5&7$
ZZ11 ,G00593S ZZI2,GxOQ596S INC(G-G+).3)i
INC(P=P+ )s S F-INT (P> 7)GOTO( 18.69)5
IF-lNT(Pwl )GOT0(3.3)S IF-IN7? Pm2)GOTO(3*4) 4
IF-INTl Pw3)GOTO(3*5)S IF-INT(P=4)GOTO(3*6)
IF-lNT( Pw5)GOTO(3.7) S
IF-INT(P=6)GOTO(3.Cý3).5IF.INT(P=7)GOTO(3o8)S

B.B OVE(600)NOSFROM(l-iFHTO(QQ)$ GOTO(3.C1)
ý.4 MOVE(600)NOS.FROM( 0 )TO(QQ)sGOTO(3.Ol)

ý.5 MOVE C600)NOSFROM( ;4R)TO(Q)Q)$GOTO(3.01)
3.6 MOVE(600).NOS*FROM(88)TOCOQ)$ GCTO(3.01)

21.7 MOVE(600)NQS*FROM(CC)T0(QQ)$ GOTO(3.01)
a.03 MOVE(600)NOSoFROM[C D)TO(QQ)$ GOTO(3*01)
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3.8 :.CVF[600P%0S*FROM( EE)rO(0Q)s GOT0C3.O1)
?K~I 1 1 BR >

ENTER (SEX APR) (RB) ( RB) .
CLEAR(400)N0)SAT(GGl)$ SET(RESC=0)5 V-OS VA-OS
¶3=0$ U4=01 UB=O$ UC=OS UXvO$ UY=O$ UZ-vO$ M4s-Ov
M1=Oý M2=CiUD=O$ UWuOS SET(K=O3LmO$
IF-!Nru-HP>6mGOTO 16oll)s GOTOIAGAIN)$

.3 S.SONSS*F/(J+1)$ 1.1
-.9 SuS(X-te.1)/YYSCJ+I.3.)

SO=SO+Sl 1=1+1S IF(Im<X+,OO1)GOTO(l.9)
SOwASOS GOT011961

2.0 PRINT< ERROR>
PRINTC RMN)NXIMTS GOTO(1.O)

2.1 PRINT(R)Y)N)X)ET)D)$ GOTO(1,43)
2.2 Y=EXP(LOG(R)/(N+1fl$GOTO(l.7)$

2.3 PRINT(Y)NX)R)ET)D)$ GOTOC 1.41)
2.4 SET(PP-O)

M3uOS UArnOS UBwOS UCuO$ UXmO$ UYmOS UZuOSM4=O$
j IF-lNT(HP>6)GOTO(16*11)$ GOTO(AGAIN)S

FS FORM(3-ý4)12-4)3-2)1-1)12-6)3-1)1-6)
H FORMt(10-10)10-10)

RS SEXABRLESCCOOL7NJ68L3K5LSOO3)S
RA SEXABRLESC(00422NK8SOKCOK425)
STA1 Vs(X-1)/N$AuA'(N+1)/X$XuX-lS GOTO(1.,4)$
BTA2 XaX+lS IF(N<X+1+.QCI)GOTO(BT2 1)$ Yo(X+1 1/N

AmA I N41 )/(N-X)SJ isJ- I -SGOTO(1.4)S
BT2*1 . OAlGTO#L)

BTA3 YwS/TIANmALPI)(TeTA1(.OO)$ OO22$GT(*
IFu(-INTCL< ~STRGO(X1.)/N$(21GTO27$Z

ALPSETAlL~aSALP3SET(ALBTA3P)GOTO(TALPH)$

16.11 SET(M-CflKxO)$
14.4 PRINT-(F5)-(ZZZK)(6)NOS.AT(ZZM/208)$

INC(KuK+1)$ INCCMMt+1)S
IF-INT(M>207)GOTO( NoPROB)$
IF-lNT(K<13)GOTO(14.4)$ SET(K*O)S GOTO(14.4)

LIST
END GOTO(START)
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JERRY THOMAS - GAMMA DISTRIBUTION
BLOC (U-uj60 ) V-V6OO) w-W 600) XX-X X600)
BLOC (0-0b0O RR-7RR600)
BLOC(WW-wwb.'OQ)VV-VV600)X-X70O)E=E-EE12)
BLOC(S-S50)Y-Y50)
SYN (Z=0?6)tCVfO87)(ZZuG'4uO88)CGZinO89)(jno2)s
SYN (Zl=OSSfilxO8K);

START READ-(Fl)-(NR)M)5
ENTERE SETOPO 35
EE7u.2,ý EEB=.1$ EESs.05% ~ESIO-02S
FEv.9S EE1=.SS' EE2=.7$ EE3=.6$ EE4*.5$
EE5=.4$ EE6=o3S
F.Ella.O1s EF12m.005$
SET CHP=O)SSETCH=O)5
PRINT(23><R>14><ALPtIA>19><Z>17>$S

INC IHPutIP+1)

SETIEsO)P=O)DaO)$1 ~ IF-INTt09wO)GOrO( 10.03$ SST(K-O)$
IF(AxO)GOTO(2.235
SETCFLal)$ AlAG16 ENTERCLGAMMA)AI)LGA)s
ENTER(CVFTOT )A3AI 35

GOTO(Z.3)$
2.2 SET(FKO)$

..3 B4UIR2)C/LLZ)C1R2)
.93 M>XR(la13IR2)O1$ SHRI010)IR2)$ SRaIR2$

TPC/Z7L)/ZLL)R) S A(R)050)R)$
IF(R>1 )0R(R<O)GOTO411,O)$
GOTOtFL( 2.4) Z.835

2.4 Y'=AS CFY1l-RS
2.5 S=EXP(A*LOG(Y')-Y'-LGA)$ SETCI01)$ CONROSSUMNS4
2.6 St13(A-CON)*Sttl-l)/Y'$ SUM=SUM+St5$$

CONuCON+1% COUNTIAI+1)IN(I)GOTOC2.6)s
flYsCCFY-SUM)/S$ YI=y'-oYs
IF-A8S-NOT(0Y<*0OOOUGOTO(2*5)$ GOTO(39O) $

218 Y's-LOG(L-RJS
a; 1 0YKuV's

COUNTU(I)INCK)GOT0( 2.33$ SET(K=O3$

TSTFW0 IF(YsK<*Y!.K)GOTO(10*Z2)
Y6OZYsA. YKuY1,K$ Yl,KuY60s P=KS

:0.44 IF-IN.T(P=O)GOTO(TSTFWD) S !NCCP=P-1)S
IF(Y9P4=Y'tP)GOTO( TS ,TFWO)$
Y60=YtPS YopuYlP$ YltPuY6O$ GOTO(1O.44)$
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C.22 COUNTM-:) .'\K) "OrTG STFWD)

09W3 0E'=CY, M-3)-Y, CM-2) )ICflY, M-I.) 1$

XX,E=(Y2-Y)/(Y, CM-2-)-Y)
CWW,E=(Y,(M-31-YCM-1))/(YZ-Y,(M-1))S
VVE1(Y&-Y)/(Yt,(M-3)-Y)
RVIEO(Yl-Y)/(Y, (M-1)-Y)S INC(EmE+1)$
COUNT(NR) INC O)GOTOCZ.25)S
PRINT< R10 LOWER>
SET(P=0)

,ýs SET(F=O)
IFlRP.,E<=RRl,E)GOTC( 11.22)
Y6O=RRiES RRERR1,E$ RR1,E-IY6O.5 LOE

11.44 IF-INT(L=O)COT0(ll.I.)S INCCLzL-i,)

Y602RRiLS RR#LORRItLS RR1,LOY6O$ GOTC01.44)'S
lo22 COUM~T(NR-1UlN(E)GOTO(ll.L)

KHxRk59$ X1,H=RRI19$ X2,HwRR179S X3tlirRR239$
X4,HORR299$ X121H=RR596$
X59HkRR3595 X6,H=RR419S X7,HmRPR479S X89HPRR5399
X9#HORR569$ XIO#H=RR587$ X11,tHuRR593$
INC(HwH-+1.3)$
INCCP&P+1)S IF-INT(W>)GOTO(6.Zý)
IF-IMTCP=IJGOT0(3&3)S IF-INT(P=2)GOTO(3.4)$
IF-INT CP=3)GOTO(3*5)S IF-INTlPm4)GOT0C3*6)$
IF-INT(Pu5 )GOTO(3*7) $
IF-INTC P=63C,0T0C3.8)5 IF-INT(Pm7)G0T0(3*9)$

313 MOVE(600)NOS*FROM(O)T0OCRR)$ GOTOC9*5)
3.4 MOV'EC600)NOS.FROM(U)TO(RR)$ GOTOC9s!5)
365 MOVEC600)NOSeFROM(V)TO(RR) S GOTO(9*5)
3.6 MOVE(600)NOS.FROM(W)TO(RR) S GOTOC9.5)
3.7 M0VE(600)N0S.FROM(XX)TOCRR)s GOTO(9.5)
3.8 MOVEC600)NOS..-;ROM(WW)TO(RR)$ GOTOC9.51
i*9MOVE(600 )N0S.F~ROM(VV)TOCRR )S GOTO(9. 5'

Cao3 IF-INTCHP<6)GOTOl2,1)
SET CH=O) (PmO)

'.3.0 PRINT-CF6)-(EEP)C6)NOS.AT(XH/104)
INC(H-H+1)S INC(PinP+1)$ IF-INT(H>103)GOTOI.OO)Z
IF-INT(P<13)GOTOC 13.0)S SETCP=O 'S GOTO(13.O) S

io.0 ENTERfSEXAPR)IR2)IrKZ)S
GOTOC N.PROR) $5

2..O PRINT<R=>CR)$ GOrO(N.PROB)S
E'R0R PRINT-1F3)-CR)A)Y''iDY)$ GOTOCNoPROB)$
GAM'MA TP6CSELF+1)(045)(ALPH)$ JCALI'iCAL2)(SELF+2)
LG-aAMMA TPI11CSELF-1)(046)(ALPH)$ AXIl)CEXi)CEXIT)$
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TP(3)C047) (STOR)S
Zat21 Zl=#2% CV=1S

'0o¶ lF(Z>0. )GOTO( :.3) S
1,2 CVzCV*Z, Z:Z+051,S GOTO(1.11

CFT3 C12(CV) )E.1)5 IF-APS(CV<1)G0T0(1*2)6
ZZml/l*Zý SET(J=O)$ 81Z(CO)))$

. -,4PMA(ZL)(0)(Cl,J2S LP7UJ)(6)(1&4V$ D(0)(Z)(G1)$

G2=LOG(Z) $ S(Z)D2 )(6)S M(G2)(0)fG2)S
AA(G2.)Ui)3)(G2)$ G2sG2-Z$

"1 14 GOTOU(.L I )
-,2 G1'AfAS(CV)5 G1=LOG(GI)iS S(G2)HGll(0)$ GOT0(STORis

!F(G2>i04)GOTO(E.1)S G~nEXP(G2)$ D(Gl)(CV)(D)S
STOR R12(0O)(0)(O$

T G0T0(EX:T)S
w GOTC(2.)S

2: SXk'EXITH EXI) (12. SET(2=EWOU(3xZ1)GOTOIO60)
~t0 ALFNGAMMA

OEC (2.0.)
i: DEC (.5)

DEC t.92.893853320467267301)
co DEC (.00641025641)

D:. EC (-.0019175Z6918)(.C008417508418I(-,0005952381)
DEC 4.0007936507936508 )(-.00277777?7777777777)
DEC (.083333333333333333)

0 4 DEC (350o)Ii .Li DEC (17450580596923828125)
i.12 SEX'dC579K2F59S9820KS6)

FORM(4-2.0)1-2)
-2 FORM(10-10)$
5 FORM(12-6)3-2)1-l0)
F3 FORM(12-6-13)3-2)12-2-6)3-4)12-6-13)3-2)12-6-13)$
.4FORM(3-2.4)12-6-13)3-10 )12-2-6)3-10)12-6-13)3-2.4)S

LIST
END GOTO(START)$S
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A METHOD FOR APPROXIMATING
rROZABILITY FUNC~iunr Vuk£L±N ON FINITE DOMAINS

Joseph S. Tyler, Jr.
Systems Analysis Office

Edgewood Arsenal, Maryland

I. INTRODUCTION. The incentive for this paper arose from the
requirement to determine approximately the probability density function I
h(d) of the random variable D from a knowledge of the first r-monents
(about the origin) of that variate.

Specifically, the momenta are computed from equation (1.0).

(1.0) Mr(D) "fffJr(f , D , u, v) f (C, n, u, v) dondudv

for (r-Ol,2,...,N).

Where D is a known continuous function and f is a known continuous

probability density function of the variates 4, n, u., v. Moreover*
the range of D is known, 0 < D e 1, and the integration is performed
over the Euclidean four-dimensional space fl.

It has been demonstrated, by H. Hamburger 1920 (Ref 1), that
when the domain of definition of a probability function is finite
then that function is uniquely determined by the set of all of its
moments. A method of constructing a probability density function
defined on [-1,1], from the infinite set of its moments, has been
published by Philip Davis in his book, INTERPOLATION AND APPROXINA-
TION, 1961 (Ref 2). The method is essentially an infinite series
expansion in Legendre polynomials. However, from a statistical
viewpoint, it Is not practical to construct the required function h
frota the entire set of its moments. The purpose of this paper,
therefore, is to present a method, employing only the first r-moments,
by which nonnagative approximations of probability density functions
on [O,l can be constructed.

Essentially, the approximation method is based on an iterative
procedure. The first step utilizes the first r-moments of the random
variable D to specify the initial approximation to the function h.
Secondly, successive improvements over the initial approximation are
achieved by applying a modified version of the classical method for
representing continuous functions by orthonormal polynomials. The
error of the approximation is measured in terms of the given original
first r-moments of the variate D.

II. ESSENTIAL ASPECTS FROM THE CLASSICAL THEORY. In general,
any continuous function g(x) defined on the finite interval [0,1],
can be expanded in a series of weighted orthonormal polynomials
w(x) c, ei (x).
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Specifically, it will be required that the following set of
conditions be satisfied:

A. S(x) c C'[O,l], (i.e,, the function * and its first
derivative be continuous on the closed interval [0,11).

B. A sequence of polynomial@ {e (x)l continuous, bounded

and orthonormal with respect to sowe weight function
v(x) ! 0 [0,11 are known.

C. v(x) g(x) and v(x) a2 (x) be integreble on [0,1].

The sequence of polynomials (8 (x)) satisfy the following
properties: n

r[i] w(x) ei(x) 8j(x) dx- 0, i~j

2 0

SP 21 J e1W(x) dx . 01m

0 I
i•:i) •[P] Ixr elx e(z) dx 0 , re,i

3 10

a.0, Ieoe th coffcin of (X ine (x) x 0
! •' 0

t " '-"•; %>O, denotes the coefficient of )in in en (x)

(P5  ai'O
5 a-i n+1 , denotes the coefficient of x in +l

(Pm(x) denotes any polynomial of degree m).

Under the orthogonality conditions on {6i% the expansion of

g(x) can be expressed as"

S(1) g(z) "i" 81(x), cl" - f w(x) S(x) 8,(x) dx.
1-0

4i-O
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,I

(1.1) Sn (x) = c epix)-

i ti=O

Then by the definition of ca's and the orthonormal properties of
the e 'a, we have

Sf f. n
(1.2) W(X)[B(x) - Sn(Z)2 dx w(x)[r(x)]2dx - c 2

o 0 1-0

Now that the first member of equation (1.2) is nonnegative, the same
is true of the second member and,

(1.3) c w(x)[((x)] 2 dx, for all values of n.

i-0

Consequently,

(1.4) c2 is convergent, for n -' , and

limit ci 0 .

Hence, we conclude that Sn(x) converges to 8(x) in the least square

sense over the finite interval (0,11.

Under the assumption that g'(x) is continuous on [0,1], it can

be demonstrated that Sn(x) converges to g(x) for every x([O,1] as n

increases without bound.

The Christoffel-Darboux identity (Ref 3) provides the following
symmetric kernel function Kn(x,t), of order n, for the system of

polynomials 16 W). That is,

n

(2) gn(X,t) % Kn(t,x) - e1(t) ei(x)

i-0
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or

K (x,t) - - I
an+I

where

( 0 is the coefficient of n in % (x)

n+1
3, 0 is the coefficient of x in 0 (x)

an+1 na1

t a n+1 > an.

By utilizing this identity, we may express S n(x), equation (1.1),
as C

. i .n(x) - W(t) S(t) K (x,t) dr,

and from the orthonormal properties of the 6i'S wehave,

.(2.2) 1 - f (t) K (x,y) dt.

Multiplication of equation (2.2) by g(x), which is constant with
respect to the variable of integration gives

' 1

S(2.3) g(x) - w(t) S(x) Kn(xt) dt.
0

Hence, by subtraction of equation (2.3) from (2.1),

(2.4) Sn(x)N-(x) W f w(t)[g(t)- g(x)] K%(x,t) dt.
nn

Then, by substitution of K (x,t), equation (2), in equation (2.4) one

obtains, for an arbitrary xt[O,1], the relation.
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F an r1 g(t) -8(xW

Sx ---- (x) w t) -n+l(t) dc

( vt) -

(e2.5) f w (t)-g(x) (t)
n+- • dtJ

Ihe proof that Sn (x) converges to &(x) on [0,11 consists of

showing that equation (2.5) approaches zero as n becomes infinite.

Since, by hypothesis, the 61 's are bounded and an > 0, an+1 > 0,

then (an/an+.) is also bounded. Moreover, the derivative g' is

continuous on [0,1].

That is,
Ss~(t)-s(x)

(2.6) *'(x) - limit
t - x t- xr •and from equations (1) and (1.4), it follows that

limit g(t)-g(x)
(2.7) limit t w(x) e (x) dx * 0.

limit f t-xI 0

where the index j denotes either n or n+l in equation (2.5). Therefore,

S (x) approaches g(x) for every xE[O,l) and the expansion of S(x) can

be written as

(2.8) g(x) " E c 6 8W(x), for xW[0,1].
i-at,,0

In the derivation of the method of approximating probability
functions defined on finite domains, the following theorem for weighted
orthonormal polynomials will be required:

Theorem 1. Let H(x) denote a polynomial of degree m that is

nonnegative on [0,1]. Let 6 (x), i-Ol,..., be the orthonormal
polynomials corresponding to ihe weight function w(x) on 10,1]. Let

q qi(x), i - 0,1,..., be the orthonormal polynomials associated with the

weight function H(x)w(x). Then boundedness of the Oi's assures the

boundedness of the qi's.
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Proof. The product H(x) q (x) is a polynomial of degree n-m,

and can be expressed in the form

n-l
(3) H(s) q (x) - cn 8ix W

where

Cni J w(x) H(x) q (x) 8 (x) dx.

0

If i ' n, then cn- 0 as a consequence of the orthogonality properties

of qn(x) with respect to the weight function H(x) v(x). So that,

n4w

(3.1) H(x) q (x) .

As for the coefficients cn which do not vanish,

fil 1
[I 0

A: 2i tnL,. f w(x)[H(x)]2 [qn(x)]2 dx -w(x)[2 dx.
2ni 2x ' f ) e( dx.

0 0

The last expression follows from Schwarz's inequality, and the last

integral is equal to 1, since the %'s are normalized.
Ji

Let G - Max [H(x)], then
xc[O,]J

2 1 2
33) G/ w(x) H(x) (q(x)q j dx - G.

0

So that, iI< G1/ 2, and since 0 is bounded, that is Ieil PA,
for all xe[O.1], we have from equation (3.1).
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(3.4) IH(x) qn(x) I - IH(x) j - I qn(X) 1 G1/2 A (ml).

The polynomial H(x) by hypothesis has a lover positive bound on
[0,1]; therefore, the polynomials qn(x) are also bounded on [0,11.

III. APPROXIMATING PROBABILITY DENSITY FUNCTIONS ON [0.11. The
information and resultn discussed in Section II, is next utilized in} the formulation of a method for constructing nonnegative approximation#

of continuous probability density functions defined on the closed domain

A. Assumptions and Notations

1. Let f(x) denote a probability density function, and
f'(x) its first derivative, and assume that both f(x)
and f'(x) are continuous on [0,11.

2. It is assumed that the first r-moments, mj, J - 0,1.
.6.,r, of f(x) are known.

3. Let P (x) denote a polynomial of degree r.
r

4. It is assumed that the orthonormal polynomials
(e(x))} , associated with weight function w(x), are

known.

B. The Initial Approximation

The probability density function f(x), by equation (2.8),
can be represented by the following expansion:

f (x)
(4)-- g(x) - ci, eW(x), for xc[0,l]

w(x) 1-O

or

f(x) - w(x) ci. e (x).

i-0

The coefficients ca'a are computed from the relation

(4.1) ci e(x) f(x) dx.
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Now that e (x) is a polynomial degree i, it can be written as

i
_(4.2) ei(x) - i 1J~ al 0

and equation (4.1) can, therefore, be expressed as

(4.3) c i a aij fjj d

J-a 0

or by

I (4.4) c. i a

where

, f x. f(x) dx, Q0,1.

0

The finite set of moments mj, (Jio,l, ... ,r), are reproducible

from the expansion Siven by equation (4). That in, ,

i mi m/ xj f(x) dx: c xi w(x) e WX dx

i0 1=O 0

(4.5)

+ ai xi w(x) 6 W dx.

i-i+l 0

By property [P 3 ], the last integral is zero; therefore,

S(4.5.1) cj.,' € xi W(x) 6 (x) dx. (J-0,1,...,r)

L iO f0
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As a consequence of eauation (4-5): rho in4Ai.2 O-rCXimatiCn fcr
the density function f(x), based on its r-moments mu r has the following
form

r

(4.6) f(x)=w(x) W ci. W(x).

1-O

Moreover, it is observed that the reproducibility of the moments
possessed by f(x), is independent of the choice of the weight function.

C. Successive Improvements Over Initial Approximation

It may happen that the initial approximation may become
negative on [0,1], and in this event it is not a satisfactory rep-
resentation of the given probability density finclion f(x). The
following approximation.scheme is introduced so am to remove the
possibility of obtaining a negative approximation for f(x). For this
purpose, the initial approximation can be rewritten as

r

(4.7) f(x)- fo(X) - w(x)W • ai i(x) .

K i-O a

If fr(x) is nonnegative on [0,1], then the approximation of
f(x) by f0'x) possesses the same first r-moments as possessed by
f k) bp

f(x), by equation (4.5), and the process is therefore terminated
at this step. However, if this ts not the case, then a positive
constant h 1 can be determined such that

WWx r

(4.7.1) wl(X) W -h + [i ei(x W 0, for xc[0,1].
h 1+1 1-0

(The method by which h1 > 0 is determined is presented in subsection F.)

The first improvement over the initial approximation f (x) is
0

obtained by constructing a new sequence of orthonormal polynomials

"{q (x), i-O,l, . r) wih respect to the new weight function wI(x)

(the sequence {q } can be obtained by applying the Schmidt ortho-

normalization process (Ref 3) and then computing a new approximation
by applying equations (4.4) and (4). The new approximation has the
following form
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r
(4.8) f(x) f f 1 (x) - w (x) E (1) qC1) (x)

i-0

for 1

C i f q (x) f(x) dx- J

"0 J-0

Moreover,

r

(4.8.1) w(x) (x) m W(X)

1-0orr
OLT

f1 (x) - w(x) P2 r(X)W

and since P2r(x) is a pnlynomial of degree 2r we can write equation
(4.8) as 

,

"2r
(4.8.2) f(x) : f (x) w v(x) di e8(x)

1-0

wherem

dei - f 1 e(x) f(x) dx.

0

If f (x), equation (4.8), is nonnegative on [0,11, then the
process is terminated with the first improvement over the initial
approximation. If, however, f 1 (x) becomes negative on [0,1], then a

second positive constant h2 is determined and the computations in-

dicated by equations (4.7.1) and (4.8) are repeated.
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The results obtained after repeating the above process n times
ic C -;;ra Cz . r - L i m l.= u l lu w i ti g re la ti o n s :t

r .(49 Y xt .AI.uW w ~~L.fW. c(n) q (n)

where,

(n) (n) r It-fx d

• (4.9.1) hq+l [hn+ W q1  (x) a
• hn~l0t J,0 .

,Wx-.w 1 (x) r P~(x)

w (x) (w(x) . P (x)(

(4.9.2) f(x)- fn(X) - w(x) P( (x)

X ~(n+l) r

hf(x) , w(x) Ud 61(x)

where
"(x) fw b() f(x) dx.

SD. Convergence of Process.

The convergence of the above process can be demonstrated
by applying equation (1.2) along with the following replacements or
substitutions :
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f (x)I. 8(x) = -- , c--di

W(x)

2. Sn(X) n fn(X) n - (n+l)r

Equation (1.2) than becomes,

12 2 2(n+)r

(4.10) W() -ndx- Z d2

(41) 0 L (x) J dx j w(x) Y-0

(n+l)r f 2 (x)

Sand d is convergent provided -- is integrable over

"a.- ofmoets{.(x)l ..r

[0,1] as n - ,also limit di •0.

ii .. E. The Error E , n

i ~Having assumed that the finite set of moments {m J-0,l,1,,s,r)

are known, we then essentially carry out the approximation f (x) by

applying equation (4.9). The coefficients c are computed from the

given set of moments and it appears natural to measure the error of the

approximation in terms of the moments.

The error E(n) i defined by
r

(4.11) E A- for JuOl,...,r

with

(n)mf x n fW(x) dx,

xi w (x) dx.f " (n)

Next let,
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h1 4ll w)•() • ep~xl
(4.11.1) f2(x) - w (A) 2L [h0w(x)(x)

then.(1)-1

( h h+[80 + m.
h 1

and

E(1) 6 1) -m j .h1+4 m.

(2)+

The errors E are determined ao follows:

r

(4.11.2) f E x) - 1hn v1 (x) + v1(x, ( 1) (, )

h+1

and

E(2) h2  1 (3.) m
Sh 2+1 2 j

The error Enassociated with the n-th approximation has the

form

h

(4.12) E (n) - .L (n-1) -m jO1..r

and this error approaches zero, as n ÷ , provided that hn - 0.
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F. Construction of Positive Constants h n

It has previously been shown that the approximation f (x),

n
equation (4.9), has the same first r-moments that are possessed by
f(x). In order that f (x) represent a probability density function

n
it is necessary that fn(x) be nonnegative on the domain (0,1].

The nonnegativity of the approximation is next considered.
The approximation, at the n-th step, can be expressed as follows:

(5) f(x)= w(x) h(x) ,xE[O,1]

where,

r

1* imo

and

(5.2) q a 5X

By substituting qi(x) equation (5.2) in equation (5.1), h(x) can be

written in the form of a polynomial. This is,

(5.3) h(x) Z Anr x

for

r
i (5.4) r -ci ai

J-i

By definition w(x) is nowhere negative on [0,1], and if the

approximation becomes negative on (0,1) it is due to h(x) being
negative on that interval. Therefore, if the polynomial h(x) has a

real root, of order one, on (0,1) it implies there exist at least one
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point x0 e(Gi) such that h(x 0 0. ;ne Zo.lovw.ng two theorems can

be applied to determine the possibility of a real root of h(x) on (0,1).

Theorem 2: On the upper bound for the real roots of a polynomial.

Let R(x) be a polynomial of degree r, and let R(k) (x-1) > 0 for

(k=O,l,...,r), where R denotes the k-th derivative of polynomial
R(x). Then the point x-1 is an upper bound for the real roots of R(x).

Proof: By Taylor's formula, the polynomial R(x) can be expandedabout the point x-1. That is,

r (xl)k

(5.5) R(x) -R(x-l) + k-R (k) (x-l), f -

By hypothesis

(kc)"(5.6) R (x-l) !.0, for (k-0,l,...,r). .

Hence, R(x) for x > 1, by equation (5.5) is also-positive. Thereforei
x-l is an upper bound for all the real roots of R(x).

Theorem 3: On the lower bound for the positive real roots of a,
polynomial.

Let h(x) be a polynomial of degree r, and denote its real roots
by the set x1, .. xr}

" That is,

(5.7) h()bxr+ b xrl + ... + b or

(5.8) h(x) - b 0 (x-x 2) ... (X-x d)

Next, let polynomial R(x) be defined in the following manner

(5.9) R(x) - x h (l/x), or
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(5.10) R(x) xr [box-r + ... + b, or

0 r

(51)R(x) b b b1 x + ... + b r ro

(5.12) i(s) - bo(1-lza) (1-x 2x) ... (1-xZx).

The polynomial R(x) equation (5.11) simply reverse@ the order of the
coefficients of h(x) and the roots of R(x) equation (5.12) are simply
the reciprocals of the roots of h(x).

If no real root of h(x) lies in (0,1), then no real root of R(x)
lies in the interval (1,-) and by theorem 2, x-i is an upper bound for

,- I _the real roots of•_R(x). Moreover, x-l is a lower bound for the positive
real roots of h(s).

Proof:. The roots of R(x) are the elements of the set C1/x

""•. (iul,2,...,] 'orevOer,."

(5.13) (1). si , 0 implies 0' 0, and
i= i

(5.14) (2). x 1 implies -'1

Hance, (1) and (2) together imply that R(x) has no real roots in the
open interval (1, *). Therefore, x-l is an upper bound for the real
roots'of R(s). Moreover, x - 1.1a a lower bound for the positive real
roots of h(x) which implies that h(x) has no real roots on the interval(0,1).

By the application of theorems (2) and (3), a test can be con-
structed to determine the positivity of the polynomial h(x) on (0,1).
From equation (5.3) h(x) in defined as

r

(5.15) b(x) - Ari x

1-0

Let R(x) be the polynomial

(5.16) R(x) x A hr) xr-

1-0
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Then the k-th derivative of R(x) is denoted by

(r-k)'-(k) (r-i)' i, -- k

(5.17) R (x) - - A, AX r I

(r-i-k) (

or

(5.18) R x A Xi+ (iI Ai~

J1 roQ01 'iX

and if h(x) has no real roots on (0,1), then by theorem (3),

Q)(4l) 0rI r-
(5.19) R( (xl) + A .

j! ro Er .- 0.'

j- (j-i)I

That is,

.J • (r-i)l
(5.20) ro - L!. -

±i-

for (jQ4,1, ... , r).

When the relation on Aro (equation 5.20) is satisfied the

approximation, equation (5), is positive on (0,1) and represents the
probability density function.

However, if RQ) (x-1) - 0, for any value of J, then h(x) must
be modified such that its modified form becomes a positive function
on (0,1). Essentially, the constant term A is increased by some

positive constant h until equation (5.20) is satisfied for all values
of J=0,1,...,r.

The product of w(x) and the modified positive function h(x)
produces a new weight function and this new weight function is then
used to generate a new set of orthonormal polynomials {qi(x): i•=O,,...,r}

needed to obtain the next improved approximation. The process is
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terminated when the succeeding approximation becomes positive on (0,1)
and the succeeding weight function has moments that are arbitrarily
close to the moments of f(x).
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